
JAX: Compiles the Future of Deep Learning to Present

Yu Yin @yxonic

12/1/2022

About me

Name: 阴钰

Grade: 博四

Supervisor: 陈恩红

Research interest:

educational data mining

machine learning

code intelligence

GitHub pro�le: https://github.com/yxonic

https://github.com/yxonic

Contents

The popularity of JAX

Why JAX?

DL framework at its core

JAX mechanism

The development of DL frameworks

How to think in JAX?

Pure functions

Function transformations

Application: calculating gradients

Application: JIT optimizations

Working with high-level DL frameworks

Improve your own code

JAX

What is JAX?

A machine learning framework

First released in 2018

Developed by Google Research teams

DL framework trends

https://paperswithcode.com/trends

https://paperswithcode.com/trends

People using JAX

DeepMind

"JAX resonates well with our engineering philosophy and has been widely adopted

by our research community over the last year."

…

"We have found that JAX has enabled rapid experimentation with novel algorithms

and architectures and it now underpins many of our recent publications."

HuggingFace

"🤗 Hugging Face Diffusers supports Flax (JAX-based framework) since version 0.5.1!

This allows for super fast inference on Google TPUs, such as those available in Colab,

Kaggle or Google Cloud Platform."

https://www.deepmind.com/blog/using-jax-to-accelerate-our-research

https://huggingface.co/blog/stable_diffusion_jax

https://www.deepmind.com/blog/using-jax-to-accelerate-our-research
https://huggingface.co/blog/stable_diffusion_jax

Why JAX?

Why do we need a new DL framework?

New trend? Google replacing TensorFlow?

Fancy functionalities?

Speed?

DL framework at its core

Low-level:

tensor computation

auto gradient calculation

hardware acceleration

High-level:

NN network de�nition

parameter management

optimization

training

data loading

…

JAX as a faster NumPy

jax.numpy has almost the same API as NumPy

JAX utilize SIMD/CUDA/TPU whenever possible, which is fast!

1 import numpy as np
2
3 x = np.random.random((10000, 10000))
4
5 (x - x.mean(1)) / x.std(1) # NumPy: 1.81 s

1 import jax.numpy as jnp
2
3 x = jnp.array(x)
4
5 (x - x.mean(1)) / x.std(1) # JAX: 410 ms

JAX as an even faster NumPy

Compile functions with JIT (Just-In-Time) for even more acceleration

1 def norm(x):
2 x = x - x.mean(1, keepdims=True)
3 return x / x.std(1, keepdims=True)
4
5 norm(x) # 426 ms

1 from jax import jit
2
3 norm_compiled = jit(norm)
4
5 norm_compiled(x) # 218 ms!

Autograd in JAX

Gradient computation: jax.grad

Take the original function as input

Output the gradient function

No more sess.run, zero_grad, backward, etc.

Gradient function can also be accelerated

1 def f(x):
2 return x ** 2
3
4 g = jax.grad(f) # g: x -> 2*x
5 g(3.0) # -> 6.0
6
7 g_compiled = jax.jit(g)
8 g_compiled(3.0) # also 6.0, but faster

De�ne more complex computation

Strong alignment with math notations

De�ning networks: math functions that take data and parameters

Gradients: w.r.t network parameters

Automatic vectorisation

De�ne computation for one instance

Get batched version with jax.vmap

1 def f(w, x):
2 return jax.nn.sigmoid(w * x)
3
4 def g(w, x, y):
5 return (f(w, x) - y) ** 2
6
7 grad = jax.grad(g)
8 grad_batched = \
9 jax.vmap(grad, in_axes=(None, 0, 0))

f(x;w) = σ(w ⋅ x)

g(x, y;w) = f(x;w) − y()2

∇ g =w

∂w
∂g

The development of DL frameworks

How did we get here?

Comparing Tensor�ow, PyTorch and JAX

Static graph: de�ne-then-run

Dynamic graph: de�ne-by-run

Compiling: write native code

The development of DL frameworks

Why is JAX the future?

Design trend:

system-centered math-centered

�xed paradigm �exible computation

all-in-one framework only focus on the core (computation, autograd, acceleration)

→

→

→

Why JAX?

JAX introduces a new thinking model

With JAX, you should be able to:

Think less of how computation is run under-the-hood. Think more in math.

Design novel computations with more �exibility and convenience.

Achieve high performance with JIT, instead of optimizing your code manually.

Choose the best tools at each stage of your task. Don’t rely on a huge framework anymore.

Contribute back to the ecosystem more easily. Write your own framework if you want.

How to think in JAX?

Pure functions

Function transformations

Application: calculating gradients

Application: JIT optimizations

Working with high-level DL frameworks

Improve your own code

Pure functions

Functions in programming languages are often impure

What are pure functions?

de�nes a mapping

all the input data is passed through the function parameters

all the results are output through the function results

no side-effect:

given the same input, returns the same output

have no effect on the outside environment

Pure functions are math functions

Pure functions

More about side-effects:

having internal/global states: not guaranteed to be the same on each run

having extra output: affects the outside environment

Common side-effects:

use global variables / self members

mutate an array

use iterators

generate random numbers

print to screen

save to �le

…

Pure functions should not have any side-effect

Purify a stateful calculation

Many impure functions can be puri�ed

E.g. in-place mutations

1 # impure:
2
3 # not allowed in JAX
4 x[1, :] = 1.0

1 # pure:
2
3 # `set` returns a new array
4 updated_x = x.at[1, :].set(1.0)

Purify a stateful calculation

E.g. stateful calculation

1 # impure:
2 class RNN(nn.Module):
3 ...
4 def forward(self, x):
5 self.h = torch.tanh(
6 self.w_x * x + self.w_h * self.h
7)
8 y = torch.tanh(self.w_o * self.h)
9 return y

1 # pure:
2 def rnn(params, x, h):
3 h = jnp.tanh(
4 params.w_x * x + params.w_h * h
5)
6 y = jnp.tanh(params.w_o * h)
7 return y, h

Purify a stateful calculation

E.g. auxiliary outputs

1 # impure:
2 def attention(q, k, v):
3 score = ...
4 y = ...
5 logging.info(score)
6 save_score_to_file(filename, score)
7 return y

1 # pure:
2 def attention(q, k, v):
3 score = ...
4 y = ...
5 return y, score

Purify a stateful calculation

E.g. randomness

1 def normal(): # impure
2 return np.random.normal()

1 rng = np.random.default_rng(0)
2
3 def normal(rng): # still no, modifies rng
4 return rng.normal()

1 key = jax.random.PRNGKey(0)
2
3 # pure
4 def normal(key):
5 # split a new key instead of modify
6 # the original
7 key, subkey = jax.random.split(key)
8 # use the new key for generation
9 x = jax.random.normal(subkey)
10 return x

Why pure functions?

Math-like functions

Declarative instead of imperative

focus on what instead of how

less proned to errors

Data-centric programming

build a clear data �ow

helps clarify complex structures

results are more controllable, good for reproducibility

Enables function transformation

Function transformations

Function transformation:

takes a pure function (transforming impure functions can cause unexpected behaviors)

transforms it to another pure function

E.g. jax.vmap:

input:

output:

can be used for batched computation

Function transformations are composable

apply multiple times

arbitrary combinations

provides more convenience and �exibility

f : x → y

g : {x } →i {f(x)}i

Application: calculating gradients

Autograd is the core of DL frameworks

Gradient can be seen as a function transformation

Apply multiple times to get higher order gradients

jax.grad

input:

output:

f : x → y

g = f ′

Application: JIT optimizations

JIT can also be seen as a function transformation

Under-the-hood:

Python code compiler function optimized machine code

JIT (just-in-time): compilation is done at runtime

only pure function can be compiled

The concept: embed a language and its compiler in Python

Apache TVM, taichi, etc.

learn more about machine learning compilation (MLC):

https://mlc.ai, an open course by Tianqi Chen, CMU

1 g = jax.jit(f)
2
3 @jax.jit
4 def f(...):
5 ...

→ →

https://tvm.apache.org/
https://github.com/taichi-dev/taichi
https://mlc.ai/

Working with high-level DL frameworks

JAX offers low-level computation, autograd, and acceleration

Use high-level frameworks to implement your network faster

Working with high-level DL frameworks

Google Flax: a neural network library and ecosystem for JAX

Frameworks by DeepMind:

Haiku: simple neural network library for JAX

Chex: utilities for managing and testing network parameters

Optax: gradient processing and optimization

RLax: library for implement reinforcement learning agents

Jraph: library for graph neural networks

You can write your own framework with it:

recommender systems?

federated learning?

https://www.deepmind.com/blog/using-jax-to-accelerate-our-research

https://github.com/google/flax
https://github.com/deepmind/dm-haiku
https://github.com/deepmind/chex
https://github.com/deepmind/optax
https://github.com/deepmind/rlax
https://github.com/deepmind/jraph
https://www.deepmind.com/blog/using-jax-to-accelerate-our-research

Improve your own code

You don’t need to migrate to JAX to bene�t from it

Apply the way of thinking in your code

Use similar tools in your framework of choice

Improve your own code

Apply the way of thinking: data-centric programming

Think of layers as pure data (parameters)

Think of methods as pure functions that maps data to data

Track your data �ow: think of how data are generated, transferred, and transformed

Good for discovering bugs and performance bottleneck

Improve your own code

Use similar tools: PyTorch JIT and functorch

1 class MyModule(torch.nn.Module):
2 def __init__(self, N, M):
3 super().__init__()
4 self.weight = \
5 torch.nn.Parameter(torch.rand(N, M))
6 self.linear = torch.nn.Linear(N, M)
7 def forward(self, input):
8 output = self.weight.mv(input)
9 output = self.linear(output)
10 return output
11 # jit
12 scripted_module = \
13 torch.jit.script(MyModule(2, 3))

1 # grad
2 cos_f = functorch.grad(torch.sin)
3 cos_f(x) # == x.cos()
4
5 neg_sin_f = grad(grad(torch.sin))
6 neg_sin_f(x) # == -x.sin()
7
8 # vmap
9 w = torch.randn(3, requires_grad=True)
10 def model(x):
11 return feature_vec.dot(w).relu()
12 examples = torch.randn(batch_size, 3)
13 result = vmap(model)(examples)

https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html

https://pytorch.org/functorch/stable/

https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html
https://pytorch.org/functorch/stable/

Additional tips on optimization

Suggestion: spend some time on optimization every now and then.

Some practical tips:

Find the bottleneck before doing anything.

Which part of your program costs the most?

Is your workload compute-intensive or memory-intensive?

Does your program spend too much time on data transfer?

Optimize hot functions manually or with JIT.

Experiment with smaller model setups �rst. Scale it up once it works.

Try not to load full data in memory. Build a pipeline if possible.

Approximations: utilize sparsity, use lower percision �oats, etc.

Learn More
Documentation · GitHub · Video · Course

https://jax.readthedocs.io/
https://github.com/google/jax
https://www.youtube.com/watch?v=iDxJxIyzSiM
https://mlc.ai/

