
JAX: Compiles the Future of Deep Learning to Present

Yu Yin @yxonic

12/1/2022



About me

Name: 阴钰

Grade: 博四

Supervisor: 陈恩红

Research interest:

educational data mining

machine learning

code intelligence

GitHub profile: https://github.com/yxonic

https://github.com/yxonic


Contents

The popularity of JAX

Why JAX?

DL framework at its core

JAX mechanism

The development of DL frameworks

How to think in JAX?

Pure functions

Function transformations

Application: calculating gradients

Application: JIT optimizations

Working with high-level DL frameworks

Improve your own code



JAX

What is JAX?

A machine learning framework

First released in 2018

Developed by Google Research teams



DL framework trends

https://paperswithcode.com/trends

https://paperswithcode.com/trends


People using JAX

DeepMind

"JAX resonates well with our engineering philosophy and has been widely adopted

by our research community over the last year."

…

"We have found that JAX has enabled rapid experimentation with novel algorithms

and architectures and it now underpins many of our recent publications."

HuggingFace

"🤗  Hugging Face Diffusers supports Flax (JAX-based framework) since version 0.5.1!

This allows for super fast inference on Google TPUs, such as those available in Colab,

Kaggle or Google Cloud Platform."

https://www.deepmind.com/blog/using-jax-to-accelerate-our-research

https://huggingface.co/blog/stable_diffusion_jax

https://www.deepmind.com/blog/using-jax-to-accelerate-our-research
https://huggingface.co/blog/stable_diffusion_jax


Why JAX?

Why do we need a new DL framework?

New trend? Google replacing TensorFlow?

Fancy functionalities?

Speed?



DL framework at its core

Low-level:

tensor computation

auto gradient calculation

hardware acceleration

High-level:

NN network definition

parameter management

optimization

training

data loading

…



JAX as a faster NumPy

jax.numpy has almost the same API as NumPy

JAX utilize SIMD/CUDA/TPU whenever possible, which is fast!

1 import numpy as np
2
3 x = np.random.random((10000, 10000))
4
5 (x - x.mean(1)) / x.std(1)  # NumPy: 1.81 s

1 import jax.numpy as jnp
2
3 x = jnp.array(x)
4
5 (x - x.mean(1)) / x.std(1)  # JAX: 410 ms



JAX as an even faster NumPy

Compile functions with JIT (Just-In-Time) for even more acceleration

1 def norm(x):
2     x = x - x.mean(1, keepdims=True)
3     return x / x.std(1, keepdims=True)
4
5 norm(x)  # 426 ms

1 from jax import jit
2
3 norm_compiled = jit(norm)
4
5 norm_compiled(x)  # 218 ms!



Autograd in JAX

Gradient computation: jax.grad

Take the original function as input

Output the gradient function

No more sess.run, zero_grad, backward, etc.

Gradient function can also be accelerated

1 def f(x):
2     return x ** 2
3
4 g = jax.grad(f)  # g: x -> 2*x
5 g(3.0)  # -> 6.0
6
7 g_compiled = jax.jit(g)
8 g_compiled(3.0)  # also 6.0, but faster



Define more complex computation

Strong alignment with math notations

Defining networks: math functions that take data and parameters

Gradients: w.r.t network parameters

Automatic vectorisation

Define computation for one instance

Get batched version with jax.vmap

1 def f(w, x):
2     return jax.nn.sigmoid(w * x)
3
4 def g(w, x, y):
5     return (f(w, x) - y) ** 2
6
7 grad = jax.grad(g)
8 grad_batched = \
9     jax.vmap(grad, in_axes=(None, 0, 0))

f(x;w) = σ(w ⋅ x)

g(x, y;w) = f(x;w) − y( )2

∇ ​g =w ​

∂w
∂g



The development of DL frameworks

How did we get here?

Comparing Tensorflow, PyTorch and JAX

Static graph: define-then-run

Dynamic graph: define-by-run

Compiling: write native code



The development of DL frameworks

Why is JAX the future?

Design trend:

system-centered  math-centered

fixed paradigm  flexible computation

all-in-one framework  only focus on the core (computation, autograd, acceleration)

→

→

→



Why JAX?

JAX introduces a new thinking model

With JAX, you should be able to:

Think less of how computation is run under-the-hood. Think more in math.

Design novel computations with more flexibility and convenience.

Achieve high performance with JIT, instead of optimizing your code manually.

Choose the best tools at each stage of your task. Don’t rely on a huge framework anymore.

Contribute back to the ecosystem more easily. Write your own framework if you want.



How to think in JAX?

Pure functions

Function transformations

Application: calculating gradients

Application: JIT optimizations

Working with high-level DL frameworks

Improve your own code



Pure functions

Functions in programming languages are often impure

What are pure functions?

defines a mapping

all the input data is passed through the function parameters

all the results are output through the function results

no side-effect:

given the same input, returns the same output

have no effect on the outside environment

Pure functions are math functions



Pure functions

More about side-effects:

having internal/global states: not guaranteed to be the same on each run

having extra output: affects the outside environment

Common side-effects:

use global variables / self members

mutate an array

use iterators

generate random numbers

print to screen

save to file

…

Pure functions should not have any side-effect



Purify a stateful calculation

Many impure functions can be purified

E.g. in-place mutations

1 # impure:
2
3 # not allowed in JAX
4 x[1, :] = 1.0

1 # pure:
2
3 # `set` returns a new array
4 updated_x = x.at[1, :].set(1.0)



Purify a stateful calculation

E.g. stateful calculation

1 # impure:
2 class RNN(nn.Module):
3   ...
4   def forward(self, x):
5     self.h = torch.tanh(
6         self.w_x * x + self.w_h * self.h
7     )
8     y = torch.tanh(self.w_o * self.h)
9     return y

1 # pure:
2 def rnn(params, x, h):
3   h = jnp.tanh(
4     params.w_x * x + params.w_h * h
5   )
6   y = jnp.tanh(params.w_o * h)
7   return y, h



Purify a stateful calculation

E.g. auxiliary outputs

1 # impure:
2 def attention(q, k, v):
3     score = ...
4     y = ...
5     logging.info(score)
6     save_score_to_file(filename, score)
7     return y

1 # pure:
2 def attention(q, k, v):
3     score = ...
4     y = ...
5     return y, score



Purify a stateful calculation

E.g. randomness

1 def normal(): # impure
2     return np.random.normal()

1 rng = np.random.default_rng(0)
2
3 def normal(rng): # still no, modifies rng
4     return rng.normal()

1 key = jax.random.PRNGKey(0)
2
3 # pure
4 def normal(key):
5     # split a new key instead of modify
6     # the original
7     key, subkey = jax.random.split(key)
8     # use the new key for generation
9     x = jax.random.normal(subkey)
10     return x



Why pure functions?

Math-like functions

Declarative instead of imperative

focus on what instead of how

less proned to errors

Data-centric programming

build a clear data flow

helps clarify complex structures

results are more controllable, good for reproducibility

Enables function transformation



Function transformations

Function transformation:

takes a pure function (transforming impure functions can cause unexpected behaviors)

transforms it to another pure function

E.g. jax.vmap:

input: 

output: 

can be used for batched computation

Function transformations are composable

apply multiple times

arbitrary combinations

provides more convenience and flexibility

f : x → y

g : {x ​} →i {f(x ​)}i



Application: calculating gradients

Autograd is the core of DL frameworks

Gradient can be seen as a function transformation

Apply multiple times to get higher order gradients

jax.grad

input: 

output: 

f : x → y

g = f ′



Application: JIT optimizations

JIT can also be seen as a function transformation

Under-the-hood:

Python code compiler function  optimized machine code

JIT (just-in-time): compilation is done at runtime

only pure function can be compiled

The concept: embed a language and its compiler in Python

Apache TVM, taichi, etc.

learn more about machine learning compilation (MLC):

https://mlc.ai, an open course by Tianqi Chen, CMU

1 g = jax.jit(f)
2
3 @jax.jit
4 def f(...):
5     ...

→ →

https://tvm.apache.org/
https://github.com/taichi-dev/taichi
https://mlc.ai/


Working with high-level DL frameworks

JAX offers low-level computation, autograd, and acceleration

Use high-level frameworks to implement your network faster



Working with high-level DL frameworks

Google Flax: a neural network library and ecosystem for JAX

Frameworks by DeepMind:

Haiku: simple neural network library for JAX

Chex: utilities for managing and testing network parameters

Optax: gradient processing and optimization

RLax: library for implement reinforcement learning agents

Jraph: library for graph neural networks

You can write your own framework with it:

recommender systems?

federated learning?

https://www.deepmind.com/blog/using-jax-to-accelerate-our-research

https://github.com/google/flax
https://github.com/deepmind/dm-haiku
https://github.com/deepmind/chex
https://github.com/deepmind/optax
https://github.com/deepmind/rlax
https://github.com/deepmind/jraph
https://www.deepmind.com/blog/using-jax-to-accelerate-our-research


Improve your own code

You don’t need to migrate to JAX to benefit from it

Apply the way of thinking in your code

Use similar tools in your framework of choice



Improve your own code

Apply the way of thinking: data-centric programming

Think of layers as pure data (parameters)

Think of methods as pure functions that maps data to data

Track your data flow: think of how data are generated, transferred, and transformed

Good for discovering bugs and performance bottleneck



Improve your own code

Use similar tools: PyTorch JIT and functorch

1 class MyModule(torch.nn.Module):
2   def __init__(self, N, M):
3     super().__init__()
4     self.weight = \
5       torch.nn.Parameter(torch.rand(N, M))
6     self.linear = torch.nn.Linear(N, M)
7   def forward(self, input):
8     output = self.weight.mv(input)
9     output = self.linear(output)
10     return output
11 # jit
12 scripted_module = \
13   torch.jit.script(MyModule(2, 3))

1 # grad
2 cos_f = functorch.grad(torch.sin)
3 cos_f(x) # == x.cos()
4
5 neg_sin_f = grad(grad(torch.sin))
6 neg_sin_f(x) # == -x.sin()
7
8 # vmap
9 w = torch.randn(3, requires_grad=True)
10 def model(x):
11     return feature_vec.dot(w).relu()
12 examples = torch.randn(batch_size, 3)
13 result = vmap(model)(examples)

https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html

https://pytorch.org/functorch/stable/

https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html
https://pytorch.org/functorch/stable/


Additional tips on optimization

Suggestion: spend some time on optimization every now and then.

Some practical tips:

Find the bottleneck before doing anything.

Which part of your program costs the most?

Is your workload compute-intensive or memory-intensive?

Does your program spend too much time on data transfer?

Optimize hot functions manually or with JIT.

Experiment with smaller model setups first. Scale it up once it works.

Try not to load full data in memory. Build a pipeline if possible.

Approximations: utilize sparsity, use lower percision floats, etc.



Learn More
Documentation · GitHub · Video · Course

https://jax.readthedocs.io/
https://github.com/google/jax
https://www.youtube.com/watch?v=iDxJxIyzSiM
https://mlc.ai/

