

Continuous Control: Basics and Beyond

阴钰 2019.11.12

Outline

2

□ Background

- Problem and Modeling
- Algorithms for Continuous Control
- Applications
- Conclusion
- □ References

Background

3

Continuous control

Background

4

Characteristics

- □ Continuous action space
- □ (Mostly) discrete time
- Long-term feedback

Outline

5

Background

Problem and Modeling

Algorithms for Continuous Control

- Applications
- Conclusion
- □ References

Modeling control problem: MDP

- General case: stochastic environment, arbitrary action space
- □ State:

6

- □ Action:
- □ State transition:
- □ Reward:
- Discount factor:

 $egin{aligned} \mathcal{S} & \ \mathcal{A} & \ P(s_{t+1}|s_t,a_t) \ r(s_t,a_t) & \ \gamma & \end{aligned}$

Problem Definition

AgentGeneral case: stochastic policy

$$\pi: \mathcal{S} \to \mathcal{P}(\mathcal{A})$$

□ Deterministic policy

$$\pi: \mathcal{S} \to \mathcal{A}$$

Problem Definition

□ Objective

□ Trajectory under policy π $s_1 \xrightarrow{a_1 \sim \pi, s_2 \sim P(s_2|s_1, a_1)} s_2 \xrightarrow{a_2 \sim \pi, s_3 \sim P(s_3|s_2, a_2)} s_3 \dots$ □ Return (from time *t*)

$$G_t = \sum_{i=t}^T \gamma^{i-t} r(s_i, a_i)$$

Expected return (objective)

Random variable

$$J = \mathbb{E}_{(s_t, a_t) \sim \rho_{\pi}}[\underline{G_t}]$$

Following policy trajectory distribution

Problem Definition

□ Value functions

- □ Commonly used expectations
- □ State value function

$$V^{\pi}(s_t) = \mathbb{E}_{\pi}[G_t|s_t]$$

□ Action value function

$$Q^{\pi}(s_t, a_t) = \mathbb{E}_{\pi}[G_t|s_t, a_t]$$

Bellman Equation

- □ Action-value function
 - $Q^{\pi}(s_t, a_t) = \mathbb{E}_{\pi}[G_t | s_t, a_t]$
- □ **Bellman equation** (unfold one term)

$$Q^{\pi}(s_t, a_t) = \mathbb{E}_{s_{t+1} \sim P(s_{t+1}|s_t, a_t)} \left[r(s_t, a_t) + \gamma \mathbb{E}_{a_{t+1} \sim \pi} [Q^{\pi}(s_{t+1}, a_{t+1})] \right]$$

Deterministic case

$$Q^{\pi}(s_t, a_t) = \mathbb{E}_{s_{t+1} \sim P(s_{t+1}|s_t, a_t)} \left[r(s_t, a_t) + \gamma Q^{\pi}(s_{t+1}, \pi(s_{t+1})) \right]$$

11

TD (Temporal Difference) Learning

- □ For deterministic policies
- □ Approximate Q^{π} using $Q(s, a; \theta_Q)$

$$Q^{\pi}(s_t, a_t) = \mathbb{E}_{s_{t+1} \sim P(s_{t+1}|s_t, a_t)} \left[r(s_t, a_t) + \gamma Q^{\pi}(s_{t+1}, \pi(s_{t+1})) \right]$$

$$\begin{split} L(\theta_Q) = \mathbb{E}_{\underbrace{(s_t, a_t) \sim \rho_\beta, s_{t+1} \sim E}} \left[\mathcal{L}[Q(s_t, a_t; \theta^Q), y_t] \right] \\ & \text{arbitrary policy} \end{split}$$

$$y_t = r(s_t, a_t) + \gamma Q(s_{t+1}, \pi(s_{t+1}); \underline{\theta_Q})$$

often omitted or replaced by target network

12

Discrete case: Q-Learning

- \square Approximate action function Q^* for best deterministic policy π^*
- □ With Q^* , π^* can be expressed as: $\pi^*(s) = \arg \max_{a \in \mathcal{A}} Q^*(s, a)$ □ Bellman equation:

$$Q^*(s_t, a_t) = \mathbb{E}_{s_{t+1} \sim E} \left[r(s_t, a_t) + \gamma \max_{a_{t+1} \in \mathcal{A}} Q^*(s_{t+1}, a_{t+1}) \right]$$

□ Loss function for basic Q-Learning:

$$L(\theta_Q) = \mathbb{E}_{s_t, a_t, s_{t+1}, r} \left[\mathcal{L} \left[Q(s_t, a_t; \theta_Q), r + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a; \theta_Q) \right] \right]$$
often omitted or replace

by target network

13

Stochastic policies: policy gradient

- □ Given policy as parameterized function: $P(a|s) = \pi(s, a; \theta^{\pi})$
- Objective: maximize expected return using gradient descent

$$J = \mathbb{E}_{\pi}[V^{\pi}(s_t)] = \mathbb{E}_{\pi}[Q^{\pi}(s_t, a_t)]$$

□ Policy Gradient Theorem:

$$abla_{ heta_{\pi}} J =
abla_{ heta_{\pi}} \mathbb{E}_{\pi} [Q^{\pi}(s_t, a_t)] \ \propto \mathbb{E}_{\pi} [Q^{\pi}(s_t, a_t)
abla_{ heta_{\pi}} \log \pi(s_t, a_t; heta_{\pi})]$$

□ REINFORCE

14

Approximate expected return directly from sampling

$$abla_{ heta_{\pi}} J \propto \mathbb{E}_{\pi} [Q^{\pi}(s_t, a_t)
abla_{ heta_{\pi}} \log \pi(s_t, a_t; heta_{\pi})]
onumber \ = \mathbb{E}_{\pi} [\underline{G_t}
abla_{ heta_{\pi}} \log \pi(s_t, a_t; heta_{\pi})]$$

estimate through sample trajectory

Actor-Critic

15

- □ Actor: policy
- □ Critic: value function approximator

□ A3C/A2C

Approximate state value with V(s_t; θ_V)
 Policy gradient

$$\nabla_{\theta_{\pi}} J \propto \mathbb{E}_{\pi} [(Q^{\pi}(s_t, a_t) - V^{\pi}(s_t)) \nabla_{\theta_{\pi}} \log \pi(s_t, a_t; \theta_{\pi})] \\\approx \mathbb{E}_{\pi} [(G_t - V(s_t; \theta_V)) \nabla_{\theta_{\pi}} \log \pi(s_t, a_t; \theta_{\pi})]$$
advantage

 \Box Critic loss: $\mathcal{L}(G_t, V(s_t; \theta_V))$

Definition and comparison

16

On-policy: training samples collected from the target policy
 Example: REINFORCE

 $abla_{ heta_{\pi}} J \propto \mathbb{E}_{\pi}[G_t
abla_{ heta_{\pi}} \log \pi(s_t, a_t; heta_{\pi})]$

- *G*_t must be sampled from current policy
- **Off-policy**: training samples can come from different policy
 - Enables replay buffer: reuse history for better sample efficiency
 - Better exploration: may take arbitrary policy when exploring
 - Example: Q-Learning

$$L(\theta_Q) = \mathbb{E}_{s_t, a_t, s_{t+1}, r} \left[\mathcal{L} \left[Q(s_t, a_t; \theta_Q), r + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a; \theta_Q) \right] \right]$$

Outline

17

Background

- Problem and Modeling
- Algorithms for Continuous Control
- Applications
- Conclusion
- □ References

Continuous Case

Challenges

- Policy representation: continuous
- □ Adapting Q-Learning: not straightforward
- □ Stability issues

DPG

19

□ PG for deterministic policy:

- □ Deterministic policy: $a = \mu(s)$
- □ Policy Gradient Theorem for deterministic policy:

$$\begin{aligned} \nabla_{\theta_{\mu}} J = \mathbb{E}_{s \sim \rho^{\beta}} [\nabla_{a} Q^{\mu}(s, a) \nabla_{\theta_{\mu}} \mu(s; \theta_{\mu}) |_{a = \mu(s; \theta_{\mu})}] \\ & \text{off-policy} \qquad \text{chain rule} \end{aligned}$$

DDPG

DDPG: Deep Deterministic Policy Gradient

- □ Actor-critic framework
- □ Value function approximator: $Q(s, a; \theta_Q)$
- Policy gradient (actor loss):

$$\nabla_{\theta_{\mu}} J = \mathbb{E}_{s \sim \rho^{\beta}} [\nabla_{a} Q(s, a; \theta_{Q})|_{s=s_{t}, a=\mu(s_{t}; \theta_{\mu})} \nabla_{\theta_{\mu}} \mu(s; \theta_{\mu})|_{s=s_{t}}]$$
off-policy

□ Critic loss: Q Learning (on deterministic policy)

$$L(\theta_Q) = \mathbb{E}_{s_t, a_t, s_{t+1}, r} \left[\mathcal{L}[Q(s_t, a_t; \theta_Q), r + \gamma Q(s_{t+1}, \mu(s_{t+1}); \theta_Q)] \right]$$

DDPG

21

Stability tricks

- □ Replay buffer: for i.i.d. samples in critic learning
- □ Target network for both actor and critic in critic learning
- □ Soft update
- Batch normalization: automatic scaling
- □ Actor noise: better exploration

SAC

22

SAC: Soft Actor-Critic

- □ Stochastic action representation: $\pi(\mathbf{a}_t | \mathbf{s}_t)$
- □ Entropy term in objective function: maximize entropy

$$J = \sum_{t=1}^{T} \mathbb{E}_{\pi} [r(s_t, a_t) + \alpha \mathcal{H}(\pi(\cdot | s_t))]$$

- Acts as randomly as possible while still able to succeed at the task
- □ Learned functions
 - Policy: parameterized distribution $\pi(\cdot; \theta_{\pi})$
 - Soft action value (update through Bellman equation):

 $Q(s_t, a_t; \theta_Q) \to r(s_t, s_{t+1}) + \gamma \mathbb{E}_{s_{t+1} \sim \rho_\pi(s)}[V(s_{t+1})]$

Soft state value (update by definition):

 $V(s_t; \theta_V) \to \mathbb{E}_{a_t \sim \pi}[Q(s_t, a_t) - \alpha \log \pi(a_t | s_t)]$

SAC

23

□ SAC: Soft Actor-Critic

Policy update: minimize KL-divergence with *Q*Gradient:

$$\begin{aligned} \nabla_{\theta_{\pi}} J &= \nabla_{\theta_{\pi}} D_{\mathrm{KL}} \Big(\pi(\cdot|s_{t};\theta_{\pi}) \Big\| \frac{\exp(Q(s_{t},\cdot))}{Z(s_{t})}) \Big) \\ &= \nabla_{\theta_{\pi}} \mathbb{E}_{a_{t} \sim \pi} \Big[-\log \Big(\frac{\exp(Q(s_{t},a_{t}) - \log Z(s_{t}))}{\pi(a_{t}|s_{t};\theta_{\pi})} \Big) \Big] \\ &= \mathbb{E}_{a_{t} \sim \pi} \nabla_{\theta_{\pi}} \log \pi(a_{t}|s_{t};\theta_{\pi}) [\log \pi(a_{t}|s_{t};\theta_{\pi}) - Q(s_{t},a_{t})] \\ &= \mathbb{E}_{a_{t} \sim \pi} \nabla_{\theta_{\pi}} \log \pi(a_{t}|s_{t};\theta_{\pi}) [\log \pi(a_{t}|s_{t};\theta_{\pi}) - (Q(s_{t},a_{t}) - V(s_{t}))] \end{aligned}$$

□ Proved to converge in the paper

SAC

24

□ SAC: Soft Actor-Critic

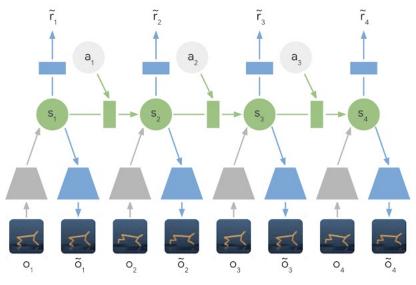
- □ Tricks applied
 - Replay buffer
 - Target value network
 - Soft update

Planet

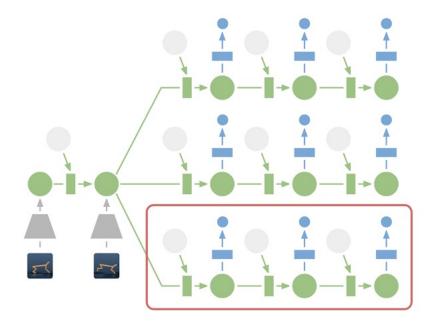
25

Planet: Deep Planning Network

- □ Model based
 - Learn how environment behaves
 - Planning over learned dynamics



learning latent dynamics



planning in latent space

Outline

26

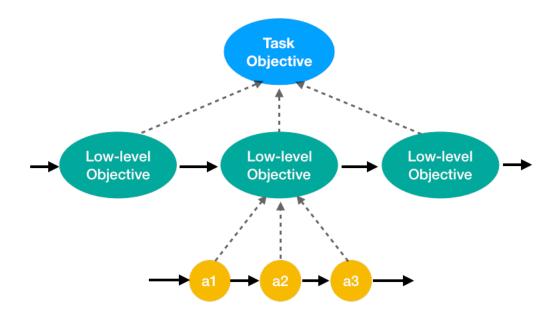
Background

- Problem and Modeling
- Algorithms for Continuous Control
- □ Applications
- Conclusion
- □ References

27

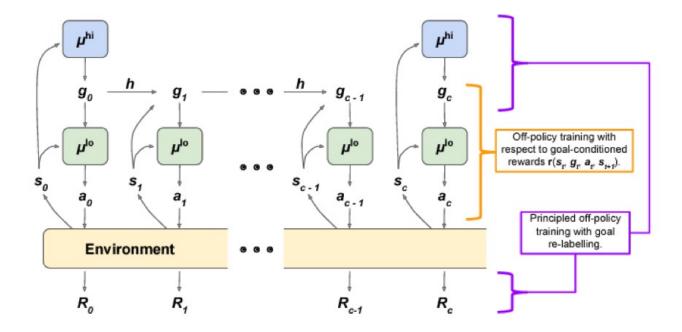
Hierarchical Reinforcement Learning

- □ For complex tasks with long-term reward signal
- □ Hierarchical objectives:
 - **Higher level**: construct low level objective for real objective
 - **Lower level**: take environment action towards low level objective



28

□ HIRO (Hierarchical Reinforcement Learning with Off-policy Correction)
 □ Higher level: produces goal *g_t* indicating *s_{t+c}* → *s_t* + *g_t* □ Lower level: take goal accomplishment as reward



Application: HRL

□ HIRO

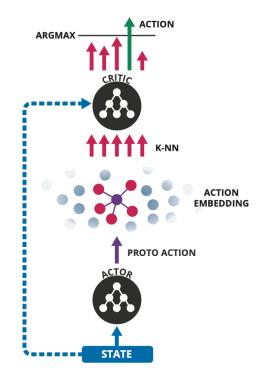
- □ Training: TD3 (DDPG variant)
- □ Off-policy correction for high level training
 - Action g_t in high level replay memory no longer take to s_{t+1}
 - To reuse memory, HIRO modify goal to preserve low level action

Prerequisites

30

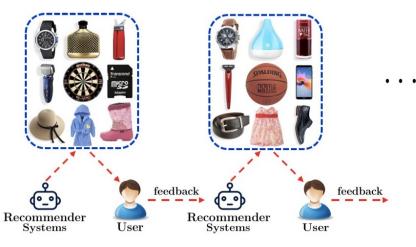
Deep RL in Large Discrete Action Spaces

- Action embedding: continuous action
- Full policy:
 - Take proto action: generate embedding
 - Take k nearest neighbors
 - Take best of k with largest action value
- Training: DDPG
 - Policy gradient from proto action
 - Critic update from actual action



DeepPage

□ Page-wise recommendation on E-commerce platforms (e.g. JD)



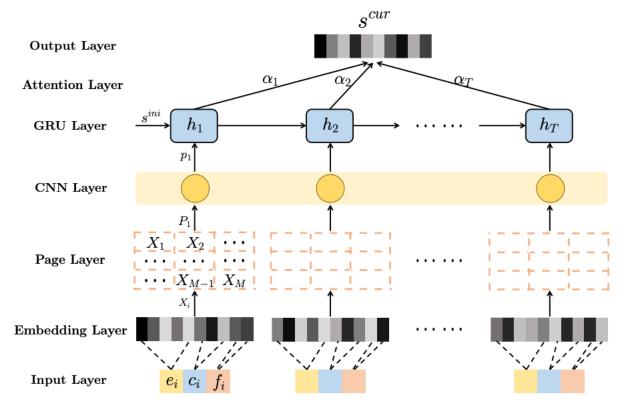
□ MDP definition

- State: user preference (based on browsing history)
- Action: a page of items
- Reward: user feedback (skip, click, purchase)

DeepPage

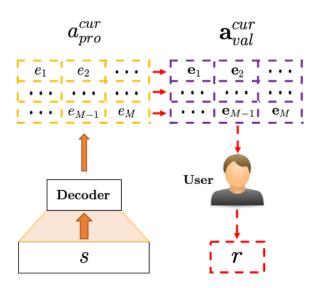
- □ Main concerns:
 - How to capture user preferences: state representation
 - How to generate recommendation: deep RL algorithms
- □ Challenges applying deep RL directly
 - Large and dynamic action space
 - Computational cost selecting optimal action (a page of items)
- □ Solution: **continuous action** (item embedding)

DeepPageState representation

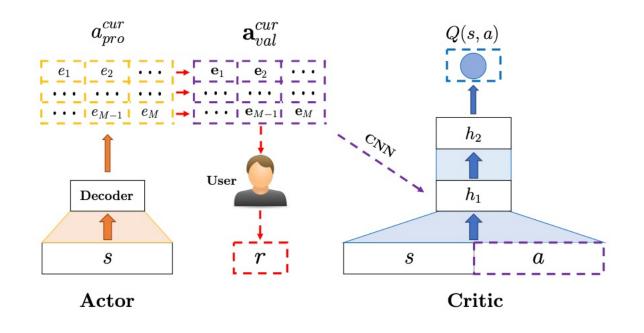


DeepPage

- □ Action generation
 - Decode action (desired embeddings) using deconvolutional layer
 - Embeddings may not correspond to real item
 - Select most similar item without replacement



DeepPage Critic (action value estimation)

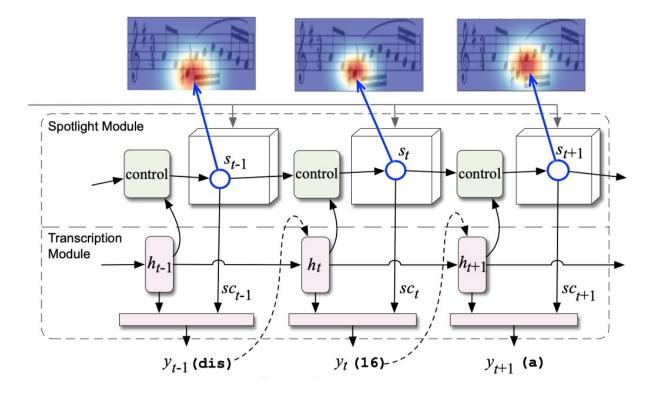


DeepPage

- □ Training
 - Online training: collected real-time data samples
 - Offline training: off-policy data samples

Application: CV

SpotlightSpotlight mechanism



Application: CV

Spotlight

38

- Spotlight control
 - Formulation:
 - State: image, along with action and output history

$$s_t = \{I, a_1, \dots, a_{t-1}, y_1, \dots, y_{t-1}\}$$

Action: spotlight center and radius (continuous)

$$a_t = \{\mu_t, \mathbf{\Sigma}_t\}$$

Reward: NLL at current step / sequence-wise metric score

Enables fine-grained control strategy

Outline

39

Background

- Problem and Modeling
- Algorithms for Continuous Control
- Applications
- Conclusion
- □ References

Conclusion

40

Conclusions

- Provides better interpretability inside black-box neural networks
- □ Good for huge/dynamic output space
- □ Ability to fine-tune control strategy

Reference

- https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-reinforcementlearning.html
- □ <u>https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html</u>
- Continuous control with deep reinforcement learning
- Soft Actor Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a <u>Stochastic Actor</u>
- Learning Latent Dynamics for Planning from Pixels (planet)
- Data-Efficient Hierarchical Reinforcement Learning
- Deep reinforcement learning for page-wise recommendations