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¨ Continuous control
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¨ Characteristics
o Continuous action space
o (Mostly) discrete time
o Long-term feedback
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Problem Definition
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¨ Modeling control problem: MDP
o General case: stochastic environment, arbitrary action space
o State:
o Action:
o State transition:
o Reward:
o Discount factor: 
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¨ Agent
o General case: stochastic policy

o Deterministic policy



Problem Definition
8

¨ Objective
o Trajectory under policy

o Return (from time t)

o Expected return (objective)

Following policy trajectory distribution

Random variable
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¨ Value functions
o Commonly used expectations
o State value function

o Action value function



Basic Methods
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¨ Bellman Equation
o Action-value function

o Bellman equation (unfold one term)

o Deterministic case



Basic Methods
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¨ TD (Temporal Difference) Learning
o For deterministic policies
o Approximate          using

often omitted or replaced 
by target network

arbitrary policy



Basic Methods
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¨ Discrete case: Q-Learning
o Approximate action function      for best deterministic policy         
o With      ,      can be expressed as:  
o Bellman equation:

o Loss function for basic Q-Learning:

often omitted or replaced 
by target network



Basic Methods
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¨ Stochastic policies: policy gradient
o Given policy as parameterized function: 
o Objective: maximize expected return using gradient descent

o Policy Gradient Theorem:
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¨ REINFORCE
o Approximate expected return directly from sampling

estimate through sample trajectory



Basic Methods
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¨ Actor-Critic
o Actor: policy
o Critic: value function approximator

¨ A3C/A2C
o Approximate state value with 
o Policy gradient

o Critic loss:

advantage



On-policy and Off-policy
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¨ Definition and comparison
o On-policy: training samples collected from the target policy

n Example: REINFORCE

n must be sampled from current policy
o Off-policy: training samples can come from different policy

n Enables replay buffer: reuse history for better sample efficiency
n Better exploration: may take arbitrary policy when exploring
n Example: Q-Learning
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Continuous Case
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¨ Challenges
o Policy representation: continuous
o Adapting Q-Learning: not straightforward
o Stability issues



DPG
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¨ PG for deterministic policy:
o Deterministic policy:
o Policy Gradient Theorem for deterministic policy:

off-policy chain rule



DDPG
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¨ DDPG: Deep Deterministic Policy Gradient
o Actor-critic framework
o Value function approximator:
o Policy gradient (actor loss):

o Critic loss: Q Learning (on deterministic policy)
off-policy



DDPG
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¨ Stability tricks
o Replay buffer: for i.i.d. samples in critic learning
o Target network for both actor and critic in critic learning
o Soft update
o Batch normalization: automatic scaling
o Actor noise: better exploration



SAC
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¨ SAC: Soft Actor-Critic
o Stochastic action representation:
o Entropy term in objective function: 

n Acts as randomly as possible while still able to succeed at the task
o Learned functions

n Policy: parameterized distribution
n Soft action value (update through Bellman equation): 

n Soft state value (update by definition):

maximize entropy



SAC
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¨ SAC: Soft Actor-Critic
o Policy update: minimize KL-divergence with Q
o Gradient:

o Proved to converge in the paper advantage



SAC
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¨ SAC: Soft Actor-Critic
o Tricks applied

n Replay buffer
n Target value network
n Soft update



Planet
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¨ Planet: Deep Planning Network
o Model based

n Learn how environment behaves
n Planning over learned dynamics

learning latent dynamics
planning in latent space
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Application: HRL
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¨ Hierarchical Reinforcement Learning
o For complex tasks with long-term reward signal
o Hierarchical objectives:

n Higher level: construct low level objective for real objective
n Lower level: take environment action towards low level objective



Application: HRL
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¨ HIRO (Hierarchical Reinforcement Learning with Off-policy Correction)

o Higher level: produces goal      indicating          
o Lower level: take goal accomplishment as reward



Application: HRL
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¨ HIRO
o Training: TD3 (DDPG variant)
o Off-policy correction for high level training

n Action      in high level replay memory no longer take to
n To reuse memory, HIRO modify goal to preserve low level action



Application: Recommendation
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¨ Prerequisites
o Deep RL in Large Discrete Action Spaces

n Action embedding: continuous action
n Full policy:

n Take proto action: generate embedding
n Take k nearest neighbors
n Take best of k with largest action value

n Training: DDPG
n Policy gradient from proto action
n Critic update from actual action



Application: Recommendation
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¨ DeepPage
o Page-wise recommendation on E-commerce platforms (e.g. JD)

o MDP definition
n State: user preference (based on browsing history)
n Action: a page of items
n Reward: user feedback (skip, click, purchase)



Application: Recommendation
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¨ DeepPage
o Main concerns:

n How to capture user preferences: state representation
n How to generate recommendation: deep RL algorithms

o Challenges applying deep RL directly
n Large and dynamic action space
n Computational cost selecting optimal action (a page of items)

o Solution: continuous action (item embedding)



Application: Recommendation
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¨ DeepPage
o State representation



Application: Recommendation
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¨ DeepPage
o Action generation

n Decode action (desired embeddings) using deconvolutional layer
n Embeddings may not correspond to real item

n Select most similar item without replacement



Application: Recommendation
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¨ DeepPage
o Critic (action value estimation)



Application: Recommendation
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¨ DeepPage
o Training

n Online training: collected real-time data samples
n Offline training: off-policy data samples



Application: CV
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¨ Spotlight
o Spotlight mechanism



Application: CV
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¨ Spotlight
o Spotlight control

n Formulation:
n State: image, along with action and output history

n Action: spotlight center and radius (continuous)

n Reward: NLL at current step / sequence-wise metric score
n Enables fine-grained control strategy
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¨ Conclusions
o Provides better interpretability inside black-box neural 

networks
o Good for huge/dynamic output space
o Ability to fine-tune control strategy
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