
fret: Framework for Reproducible ExperimenTs

A Brief Introduction

Yu Yin

Outline

1. Background

2. Design of fret

3. Tutorial
3.1 Basic Usage
3.2 Using Workspace
3.3 Working with Logs, Snapshots and Results
3.4 Running Experiments
3.5 Advanced Module Configuration

4. Examples
4.1 Example Training Process in PyTorch
4.2 Example Module Configuration in TensorFlow

5. Future Work
1/36

Background
Overview: the importance of reproducibility

Were the algorithms and resources described to allow
for reproducibility? This includes experimental
methodology, empirical evaluation, dataset
characteristics, code/pseudo-code, detailed proofs, tuning
parameter list and search space, hardware/software
utilized, other useful performance factors, etc.

—KDD 2019 Review Criterion

3/36

Background
Code complexity

To achieve reproducibility:

• Requires extra code

• Same sort of code for each new project

• Mess up with main logic. What you actually do becomes unclear

We need of a general experimental framework

4/36

Background
Challenges

1. Conducting experiments with different setups

2. Configuration management

3. Running process management

5/36

Background
Challenges

1. Conducting experiments with different setups
Approaches:

Constants (don’t do this . . .)
argparse extra code, configuration not recorded
Scripts too verbose, difficult to modify/extend

Config files even more code, management issues
What we want:

– Running from command line
– . . .with configuration properly recorded and well organized

6/36

Background
Challenges

2. Configuration management

Gin project from Google

With one more line (@gin.configurable), models will be able to:
– receive setup from configuration file
– configure with full featured referencing, scoping, and nesting

Limitations:
– Writing configuration files being complicated
– Manual tuning recording
– Unfriendly command line interface

7/36

Background
Challenges

3. Running process management
Features often needed in reproducible experiments:

– Save/load model snapshots
– Stop and resume
– Logging
– Saving results
– and more . . .

8/36

Introducing fret
Framework for Reproducible ExperimenTs

Features:

• No boilerplate code

• Intuitive CLI building

• Easy configuration and organization

• Handy running process utilities

9/36

Design
Overview

fret achieves its design goals through two main ideas:

• Define CLI command with functions

• The concept of workspace

11/36

Design
Define CLI command with functions

fret provides easy CLI building, inspired by Gin and Fire:

@fret.command
def run(foo=’bar’, num=3):

print(run.config)

$ fret run -h
usage: fret run [-h] [-foo FOO] [-num NUM]
optional arguments:
-h, --help show this help message and exit
-foo FOO, -f FOO parameter foo (default: bar)
-num NUM, -n NUM parameter num (default: 3)

$ fret run -n 5
foo=’bar’, num=5

12/36

Design
The concept of workspace

13/36

Tutorial
Installation

Just:
$ pip install fret

Or visit https://github.com/yxonic/fret for latest version

15/36

https://github.com/yxonic/fret

Basic Usage
@fret.command and @fret.configurable

Everything can be put within one file:

app.py
import fret

@fret.command
def run(ws):

model = ws.build()
print(’In [{}]: {}’.format(ws, model))

@fret.configurable
class Model:

def __init__(self, x=3, y=4):
...

16/36

Basic Usage
@fret.command and @fret.configurable

Configure and run on command line:

$ fret config Model
[ws/_default] configured "main" as "Model" with: x=3, y=4

$ fret run
In [ws/_default]: Model(x=3, y=4)

$ fret config Model -x 5 -y 10
[ws/_default] configured "main" as "Model" with: x=5, y=10

$ fret run
In [ws/_default]: Model(x=5, y=10)

17/36

Using Workspace
Configuration management

Different configuration in different workspace:

$ fret -w ws/model1 config Model
[ws/model1] configured "main" as "Model" with: x=3, y=4

$ fret -w ws/model2 config Model -x 5 -y 10
[ws/model2] configured "main" as "Model" with: x=5, y=10

$ fret -w ws/model1 run
In [ws/model1]: Model(x=3, y=4)

$ fret -w ws/model2 run
In [ws/model2]: Model(x=5, y=10)

18/36

Working with Logs, Snapshots and Results
Paths, logger, and save/load utilities

Toy model: define states to be saved/loaded:
@fret.configurable(states=[’weight’]) # here
class Model:

def __init__(self):
self.weight = 0.

def train(self):
self.weight = random.random()

def test(self):
return self.weight ** 0.5

19/36

Working with Logs, Snapshots and Results
Paths, logger, and save/load utilities

Toy train/test example with model save/load:
@fret.command
def train(ws):

logger = ws.logger(’train’) # log to screen *and* train.log
model = ws.build()

model.train()
logger.info(’trained with weight as %.3f’, model.weight)

ws.save(model, ’trained’) # save model with tag ‘trained‘

20/36

Working with Logs, Snapshots and Results
Paths, logger, and save/load utilities

Toy train/test example with model save/load:
@fret.command
def test(ws):

logger = ws.logger(’test’)
model = ws.load(’trained’) # load trained model
logger.info(’Loaded weight: %.3f’, model.weight)

result = model.test()
with ws.result(’test_result.txt’).open(’w’) as of:

save test result into a file
print(result, file=of)

21/36

Working with Logs, Snapshots and Results
Paths, logger, and save/load utilities

Running:

$ fret config Model
[ws/_default] configured "main" as "Model"

$ fret train
INFO trained with weight as 0.605

$ fret test
INFO Loaded weight: 0.605

$ cat ws/_default/result/test_result.txt
0.7776197887329115

22/36

Running Experiments
ws.run() and fret.nonbreak()

@fret.command
def resumable(ws):

with ws.run(’exp-1’) as run:
sum = run.acc()
for i in fret.nonbreak(run.range(1, 6)):

time.sleep(0.5)
sum += i
print(’current i: %d, sum: %d’ % (i, sum))

23/36

Running Experiments
ws.run() and fret.nonbreak()

$ fret resumable
current i: 1, sum: 1
current i: 2, sum: 3
^CW SIGINT received. Delaying KeyboardInterrupt.
current i: 3, sum: 6
Traceback (most recent call last):
...

KeyboardInterrupt
W cancelled by user

$ fret resumable
current i: 4, sum: 10
current i: 5, sum: 15

24/36

Advanced Module Configuration
Submodules

@fret.configurable
class A:

def __init__(self, foo=’bar’):
...

@fret.configurable(submodules=[’sub’])
class B:

def __init__(self, sub, bar=3):
self.sub = sub

25/36

Advanced Module Configuration
Submodules

$ fret config sub A
[ws/_default] configured "sub" as "A"
$ fret config B
[ws/_default] configured "main" as "B" with: sub=’sub’, bar=3
$ fret run
In [ws/_default]: B(bar=3, sub=A(foo=’bar’))

26/36

Advanced Module Configuration
Inheritance

@fret.configurable
class A:

def __init__(self, foo=’bar’):
...

@fret.configurable
class B(A):

def __init__(self, num=3, **others):
super().__init__(**others)
...

27/36

Advanced Module Configuration
Inheritance

$ fret config B -foo baz -num 0
[ws/_default] configured "main" as "B" with: foo=’baz’, num=0
$ fret run
In [ws/_default]: B(num=0, foo=’baz’)

28/36

Examples
Example training process in PyTorch

Here demonstrates a training process that is:

1. resumable

2. with separate thread for data prefetching

with ws.run(’train’) as run:
run.register(model)
run.register(optimizer)
for i in run.brange(n_epochs):

train_iter = run.iter(
’train_iter’, train_data.data, train_data.targets,
prefetch=True, batch_size=batch_size)

for batch in fret.nonbreak(tqdm(train_iter,
initial=train_iter.pos)):

...
30/36

Examples
Example module configuration in TensorFlow

Here shows sequence module configuration code in TF:

@fret.configurable
class RNN(tf.keras.Model):

def __init__(self, batch_size, vocab_size,
emb_size=128, rnn_size=256):

super().__init__()
...

31/36

Examples
Example module configuration in TensorFlow

@fret.configurable
class LSTM(RNN):

def __init__(self, rnn_size=128, **others):
super().__init__(rnn_size=rnn_size, **others)
...

@fret.configurable
class GRU(RNN):

def __init__(self, **others):
super().__init__(**others)
...

32/36

Future Work

• Result collection and table generation

• Configurable functions

• Better TensorFlow support

34/36

Reference

About fret:

• GitHub: https://github.com/yxonic/fret

• PyPI: https://pypi.org/project/fret/

Related projects:

• Gin configuration framework:
https://github.com/google/gin-config

• A RL experimental framework:
https://github.com/google/dopamine/

• Automatic CLI generation:
https://github.com/google/python-fire

• Another CLI toolkit: https://github.com/pallets/click/
35/36

https://github.com/yxonic/fret
https://pypi.org/project/fret/
https://github.com/google/gin-config
https://github.com/google/dopamine/
https://github.com/google/python-fire
https://github.com/pallets/click/

Q&A

36/36

	Background
	Design of fret
	Tutorial
	Basic Usage
	Using Workspace
	Working with Logs, Snapshots and Results
	Running Experiments
	Advanced Module Configuration

	Examples
	Example Training Process in PyTorch
	Example Module Configuration in TensorFlow

	Future Work

