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Background
Overview: the importance of reproducibility

Were the algorithms and resources described to allow
for reproducibility? This includes experimental
methodology, empirical evaluation, dataset
characteristics, code/pseudo-code, detailed proofs, tuning
parameter list and search space, hardware/software
utilized, other useful performance factors, etc.

—KDD 2019 Review Criterion

3/36



Background
Code complexity

To achieve reproducibility:

• Requires extra code

• Same sort of code for each new project

• Mess up with main logic. What you actually do becomes unclear

We need of a general experimental framework
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Background
Challenges

1. Conducting experiments with different setups

2. Configuration management

3. Running process management
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Background
Challenges

1. Conducting experiments with different setups
Approaches:

Constants (don’t do this . . . )
argparse extra code, configuration not recorded
Scripts too verbose, difficult to modify/extend

Config files even more code, management issues
What we want:

– Running from command line
– . . .with configuration properly recorded and well organized
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Background
Challenges

2. Configuration management

Gin project from Google

With one more line (@gin.configurable), models will be able to:
– receive setup from configuration file
– configure with full featured referencing, scoping, and nesting

Limitations:
– Writing configuration files being complicated
– Manual tuning recording
– Unfriendly command line interface
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Background
Challenges

3. Running process management
Features often needed in reproducible experiments:

– Save/load model snapshots
– Stop and resume
– Logging
– Saving results
– and more . . .
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Introducing fret
Framework for Reproducible ExperimenTs

Features:

• No boilerplate code

• Intuitive CLI building

• Easy configuration and organization

• Handy running process utilities
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Design
Overview

fret achieves its design goals through two main ideas:

• Define CLI command with functions

• The concept of workspace
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Design
Define CLI command with functions

fret provides easy CLI building, inspired by Gin and Fire:

@fret.command
def run(foo=’bar’, num=3):

print(run.config)

$ fret run -h
usage: fret run [-h] [-foo FOO] [-num NUM]
optional arguments:
-h, --help show this help message and exit
-foo FOO, -f FOO parameter foo (default: bar)
-num NUM, -n NUM parameter num (default: 3)

$ fret run -n 5
foo=’bar’, num=5
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Design
The concept of workspace
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Tutorial
Installation

Just:
$ pip install fret

Or visit https://github.com/yxonic/fret for latest version
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Basic Usage
@fret.command and @fret.configurable

Everything can be put within one file:

# app.py
import fret

@fret.command
def run(ws):

model = ws.build()
print(’In [{}]: {}’.format(ws, model))

@fret.configurable
class Model:

def __init__(self, x=3, y=4):
...
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Basic Usage
@fret.command and @fret.configurable

Configure and run on command line:

$ fret config Model
[ws/_default] configured "main" as "Model" with: x=3, y=4

$ fret run
In [ws/_default]: Model(x=3, y=4)

$ fret config Model -x 5 -y 10
[ws/_default] configured "main" as "Model" with: x=5, y=10

$ fret run
In [ws/_default]: Model(x=5, y=10)
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Using Workspace
Configuration management

Different configuration in different workspace:

$ fret -w ws/model1 config Model
[ws/model1] configured "main" as "Model" with: x=3, y=4

$ fret -w ws/model2 config Model -x 5 -y 10
[ws/model2] configured "main" as "Model" with: x=5, y=10

$ fret -w ws/model1 run
In [ws/model1]: Model(x=3, y=4)

$ fret -w ws/model2 run
In [ws/model2]: Model(x=5, y=10)
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Working with Logs, Snapshots and Results
Paths, logger, and save/load utilities

Toy model: define states to be saved/loaded:
@fret.configurable(states=[’weight’]) # here
class Model:

def __init__(self):
self.weight = 0.

def train(self):
self.weight = random.random()

def test(self):
return self.weight ** 0.5
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Working with Logs, Snapshots and Results
Paths, logger, and save/load utilities

Toy train/test example with model save/load:
@fret.command
def train(ws):

logger = ws.logger(’train’) # log to screen *and* train.log
model = ws.build()

model.train()
logger.info(’trained with weight as %.3f’, model.weight)

ws.save(model, ’trained’) # save model with tag ‘trained‘
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Working with Logs, Snapshots and Results
Paths, logger, and save/load utilities

Toy train/test example with model save/load:
@fret.command
def test(ws):

logger = ws.logger(’test’)
model = ws.load(’trained’) # load trained model
logger.info(’Loaded weight: %.3f’, model.weight)

result = model.test()
with ws.result(’test_result.txt’).open(’w’) as of:

# save test result into a file
print(result, file=of)
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Working with Logs, Snapshots and Results
Paths, logger, and save/load utilities

Running:

$ fret config Model
[ws/_default] configured "main" as "Model"

$ fret train
INFO trained with weight as 0.605

$ fret test
INFO Loaded weight: 0.605

$ cat ws/_default/result/test_result.txt
0.7776197887329115
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Running Experiments
ws.run() and fret.nonbreak()

@fret.command
def resumable(ws):

with ws.run(’exp-1’) as run:
sum = run.acc()
for i in fret.nonbreak(run.range(1, 6)):

time.sleep(0.5)
sum += i
print(’current i: %d, sum: %d’ % (i, sum))
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Running Experiments
ws.run() and fret.nonbreak()

$ fret resumable
current i: 1, sum: 1
current i: 2, sum: 3
^CW SIGINT received. Delaying KeyboardInterrupt.
current i: 3, sum: 6
Traceback (most recent call last):
...

KeyboardInterrupt
W cancelled by user

$ fret resumable
current i: 4, sum: 10
current i: 5, sum: 15
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Advanced Module Configuration
Submodules

@fret.configurable
class A:

def __init__(self, foo=’bar’):
...

@fret.configurable(submodules=[’sub’])
class B:

def __init__(self, sub, bar=3):
self.sub = sub

25/36



Advanced Module Configuration
Submodules

$ fret config sub A
[ws/_default] configured "sub" as "A"
$ fret config B
[ws/_default] configured "main" as "B" with: sub=’sub’, bar=3
$ fret run
In [ws/_default]: B(bar=3, sub=A(foo=’bar’))
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Advanced Module Configuration
Inheritance

@fret.configurable
class A:

def __init__(self, foo=’bar’):
...

@fret.configurable
class B(A):

def __init__(self, num=3, **others):
super().__init__(**others)
...
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Advanced Module Configuration
Inheritance

$ fret config B -foo baz -num 0
[ws/_default] configured "main" as "B" with: foo=’baz’, num=0
$ fret run
In [ws/_default]: B(num=0, foo=’baz’)
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Examples
Example training process in PyTorch

Here demonstrates a training process that is:

1. resumable

2. with separate thread for data prefetching

with ws.run(’train’) as run:
run.register(model)
run.register(optimizer)
for i in run.brange(n_epochs):

train_iter = run.iter(
’train_iter’, train_data.data, train_data.targets,
prefetch=True, batch_size=batch_size)

for batch in fret.nonbreak(tqdm(train_iter,
initial=train_iter.pos)):

...
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Examples
Example module configuration in TensorFlow

Here shows sequence module configuration code in TF:

@fret.configurable
class RNN(tf.keras.Model):

def __init__(self, batch_size, vocab_size,
emb_size=128, rnn_size=256):

super().__init__()
...
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Examples
Example module configuration in TensorFlow

@fret.configurable
class LSTM(RNN):

def __init__(self, rnn_size=128, **others):
super().__init__(rnn_size=rnn_size, **others)
...

@fret.configurable
class GRU(RNN):

def __init__(self, **others):
super().__init__(**others)
...
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Future Work

• Result collection and table generation

• Configurable functions

• Better TensorFlow support
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Reference

About fret:

• GitHub: https://github.com/yxonic/fret

• PyPI: https://pypi.org/project/fret/

Related projects:

• Gin configuration framework:
https://github.com/google/gin-config

• A RL experimental framework:
https://github.com/google/dopamine/

• Automatic CLI generation:
https://github.com/google/python-fire

• Another CLI toolkit: https://github.com/pallets/click/
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Q&A
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