
Coding Deep



Contents
Deep learning basics


Frameworks


Coding: best practices


Building wheels


Example: seq2seq


Go parallel



Deep Learning Basics




Statistical Learning

Model

Objective

Optimization analytical or numerical



Neural Networks

Basic cell



Neural Networks

MLP (multilayer perceptrons)

w

x



Neural Networks

Basic cell

Convolution cell



Neural Networks

CNN (convolutional neural network)



Neural Networks

Basic cell

Convolution cell

Recurrent cell



Neural Networks

RNN (recurrent neural network)



Linear Algebra Library
Represent data as vectors/matrices/arrays


Do linear algebra calculation



Algebra System
Represent computation (computation graph)


Calculate gradients automatically


Utilize GPU for speed



DL Frameworks
Provide pre-defined cells, layers, optimizers, 
initializers, etc.


Simplify training process



DL Frameworks



Modern Frameworks

TensorFlow (by Google)


Keras (with Theano or TensorFlow)


MXNet (supported by Amazon)


PyTorch (by Facebook)



API Design

Data input: whole array / batch / iterator


Model definition: symbols / layers / models


Training: step / fit


Utilities: inspection / visualization



Example: MNIST



Inputs
Whole array:


Batched iterators:



Model Definition

TensorFlow style


MXNet style


Functional style



TensorFlow Style
Based on variables and ops


Model output, weight initialization, optimizer step, 
are all symbols



 MXNet / tf.layers Style
Also based on variables and ops


But provides pre-defined NN layers; weights are 
generated automatically



Functional Style

Each layer is generated by some class, bound with 
specific weights


Layers act like functions, which can be chained or 
stacked up



Functional Style: Keras



Model Reuse in Keras



Functional Style: PyTorch



Training Process

Step-by-step style


Fit-on-whole-data style



Step



Fit



Inspection and Evaluation

Inspect structure


Get weights


Get intermediate outputs


Save / load a model


Logging: manually / using callbacks



Special Facilities

Embedding


Masking 


Normalization


Regularization


Label weights



More about Masking

Masked inputs should have zero loss


Masked terms should not be averaged



Coding a Deep Network



Coding Style is Important
We want our model to be:


Fast


Readable


Reusable


Extendible


Good coding style helps with these



Modular Design

For readability and reusability, we construct our 
model with these four separate parts:


Generating inputs


Building network


Training


Bookkeeping



Inputs

Why batched?


Use python generators (iterators)



Building a network

Steps:


Defining weights / layers


Linking up


Shape checking


View summary / graph



Training

Parameter initialization


Optimizers


Bookkeeping: separate directory for each run



Example: seq2seq





Approaches

Word by word


Sequence by sequence (dynamic length)


Fixed length sequences with padding


Bucketing



First Model: PyTorch



Attention



Run Model



More about RNN: Stateful, 
Unrolling, etc.

Dynamic graph vs. static graph


Symbolic loops vs. unrolling


RNN cells and RNN layers


Keras stateful API



Keras RNN Layer
Better RNN layer from recurrentshop (on github):

Layer

inputs

outputs

hidden inputs hidden outputs

…

…



Attention Decoder Cell

Cell

decoder input

encoder outputs



References
https://github.com/fchollet/keras/issues/1579


https://github.com/datalogai/recurrentshop


http://mxnet.io/how_to/bucketing.html


http://mxnet.io/architecture/note_data_loading.html


https://github.com/farizrahman4u/seq2seq


https://www.tensorflow.org/tutorials/seq2seq


https://github.com/MaximumEntropy/Seq2Seq-PyTorch

https://github.com/fchollet/keras/issues/1579
https://github.com/datalogai/recurrentshop
http://mxnet.io/how_to/bucketing.html
http://mxnet.io/architecture/note_data_loading.html
https://github.com/farizrahman4u/seq2seq
https://www.tensorflow.org/tutorials/seq2seq
https://github.com/MaximumEntropy/Seq2Seq-PyTorch

