
Coding Deep

Contents
Deep learning basics

Frameworks

Coding: best practices

Building wheels

Example: seq2seq

Go parallel

Deep Learning Basics

Statistical Learning

Model

Objective

Optimization analytical or numerical

Neural Networks

Basic cell

Neural Networks

MLP (multilayer perceptrons)

w

x

Neural Networks

Basic cell

Convolution cell

Neural Networks

CNN (convolutional neural network)

Neural Networks

Basic cell

Convolution cell

Recurrent cell

Neural Networks

RNN (recurrent neural network)

Linear Algebra Library
Represent data as vectors/matrices/arrays

Do linear algebra calculation

Algebra System
Represent computation (computation graph)

Calculate gradients automatically

Utilize GPU for speed

DL Frameworks
Provide pre-defined cells, layers, optimizers,
initializers, etc.

Simplify training process

DL Frameworks

Modern Frameworks

TensorFlow (by Google)

Keras (with Theano or TensorFlow)

MXNet (supported by Amazon)

PyTorch (by Facebook)

API Design

Data input: whole array / batch / iterator

Model definition: symbols / layers / models

Training: step / fit

Utilities: inspection / visualization

Example: MNIST

Inputs
Whole array:

Batched iterators:

Model Definition

TensorFlow style

MXNet style

Functional style

TensorFlow Style
Based on variables and ops

Model output, weight initialization, optimizer step,
are all symbols

 MXNet / tf.layers Style
Also based on variables and ops

But provides pre-defined NN layers; weights are
generated automatically

Functional Style

Each layer is generated by some class, bound with
specific weights

Layers act like functions, which can be chained or
stacked up

Functional Style: Keras

Model Reuse in Keras

Functional Style: PyTorch

Training Process

Step-by-step style

Fit-on-whole-data style

Step

Fit

Inspection and Evaluation

Inspect structure

Get weights

Get intermediate outputs

Save / load a model

Logging: manually / using callbacks

Special Facilities

Embedding

Masking

Normalization

Regularization

Label weights

More about Masking

Masked inputs should have zero loss

Masked terms should not be averaged

Coding a Deep Network

Coding Style is Important
We want our model to be:

Fast

Readable

Reusable

Extendible

Good coding style helps with these

Modular Design

For readability and reusability, we construct our
model with these four separate parts:

Generating inputs

Building network

Training

Bookkeeping

Inputs

Why batched?

Use python generators (iterators)

Building a network

Steps:

Defining weights / layers

Linking up

Shape checking

View summary / graph

Training

Parameter initialization

Optimizers

Bookkeeping: separate directory for each run

Example: seq2seq

Approaches

Word by word

Sequence by sequence (dynamic length)

Fixed length sequences with padding

Bucketing

First Model: PyTorch

Attention

Run Model

More about RNN: Stateful,
Unrolling, etc.

Dynamic graph vs. static graph

Symbolic loops vs. unrolling

RNN cells and RNN layers

Keras stateful API

Keras RNN Layer
Better RNN layer from recurrentshop (on github):

Layer

inputs

outputs

hidden inputs hidden outputs

…

…

Attention Decoder Cell

Cell

decoder input

encoder outputs

References
https://github.com/fchollet/keras/issues/1579

https://github.com/datalogai/recurrentshop

http://mxnet.io/how_to/bucketing.html

http://mxnet.io/architecture/note_data_loading.html

https://github.com/farizrahman4u/seq2seq

https://www.tensorflow.org/tutorials/seq2seq

https://github.com/MaximumEntropy/Seq2Seq-PyTorch

https://github.com/fchollet/keras/issues/1579
https://github.com/datalogai/recurrentshop
http://mxnet.io/how_to/bucketing.html
http://mxnet.io/architecture/note_data_loading.html
https://github.com/farizrahman4u/seq2seq
https://www.tensorflow.org/tutorials/seq2seq
https://github.com/MaximumEntropy/Seq2Seq-PyTorch

