
Introduction to modern C++

Key points:
• Syntax changes nullptr, using, constexpr, lambda
• Type inference auto, decltype
• Smart pointers unique_ptr, shared_ptr
• Rvalue reference motivation, move, forward
We will dicuss not only about what they are, but also
how are they implemented.

Syntax changes

• nullptr: typed null pointer constant
void f(int);
void f(void*);
f(0); // calls f(int)
f(nullptr); // calls f(void*)

• Alias declaration
using UPtrMapSS = std::unique_ptr

<std::unordered_map<std::string, std::string>>;
using FP = void (*)(int, const std::string&);
template<typename T>
using MyAllocList = std::list<T, MyAlloc<T>>;
// more examples on dealing with templates

Syntax changes

• constexpr: compile time constants
constexpr int base = 3;
constexpr int exp = base + 2;
constexpr int pow(int base, int exp) noexcept
{

auto result = 1;
for (int i = 0; i < exp; ++i) result *= base;
return result;

} // C++14
const std::array<int, pow(base, exp)> foo; // have 3^5 elements

// can’t be constexpr

What are the differences between constexpr and const?

Lambda expressions

// simple lambda expression
std::find_if(container.begin(), container.end(),

[](int val) { return 0 < val && val < 10; });

// lambda expression that captures the environment
int x;
auto add_x = [x](int y) { return x + y; }
auto add_to_x = [&x](int y) { x += y; }

Note: lifetimes of the captured references are NOT
extended!

Type inference

• Simple bottom-up type inference: similar to
template type inference
• On expression, function return type, function

parameter type, lambdas:
auto pow(int base, int exp)
{

if (exp == 0) return 1;
else return base * pow(base, exp - 1);

} // C++14.
auto lambda = [](auto x, auto y) {return x + y;};

Why so simple? What happens on ptrs/refs?

Smart pointers

• unique_ptr: based on life-cycle, “owns” a pointer
• shared_ptr: based on reference count, “shares” a

pointer
• weak_ptr: to break shared_ptr cycle (and more)

How to transfer ownership of an unique_ptr?
How to implement a tree? What about a graph?

Rvalue references: motivation

• See the following example. Do you notice the
efficiency problem?
class List { ... };
List a(10), b(20);
List c = a + b; // two steps: call op+ of a on b,

// call constructor on (a+b)

How do you write constructor for List?

Using C++98 convention

What happens?

a

b

heap

a

b

heap

a+b

a

b

heap

a+b

c

List c = a + b;

Dilemma

• operator+ have to return a temp
value, which is abandoned later.
• If we want to correctly perform

copy between variables, we
have to write a deep-copy
constructor.
• If we don’t want to deep-copy

temp variables, we’ll have to
modify the temp variable so that
it wouldn’t perform delete.

a

b

heap

a+b

c

Approach

• We want access to a temporary object (+1s), in a
way that is more flexible than const lvalue
references.
• We want to distinguish temp values from regular

values, so that we can treat them separately.
• Therefore, we need to add a new form of type into

the type system, which is rvalue reference,
denoted as T&&.

Rvalue reference

• Rvalue reference can only bind to rvalues, (non-
const) lvalue reference can only bind to lvalues.
• After binding, rvalue reference can be used as a

regular reference, which leads to a fact that rvalue
reference is an lvalue in expressions:
int &&r = 1+2;
r++; // valid!

• Lifetime of that binded rvalue is extended to the
lifetime of rvalue reference

New solution

• Treat lvalue reference normally:
do deep-copy
• Treat rvalues separately (in what

we call a move constructor):
• directly ‘steal’ data
• prevent temp object from

destroying them

• The compiler will choose the
correct overload for you

a

b

heap

a+b

c

l

std::move and std::forward

• std::move simply performs a type cast, which
makes other funtions treat an lvalue as rvalue
• std::forward is a template function that pass

arguments ‘as-is’ (in terms of type) to another
function. Have a lot to do with templates.

Example: unique_ptr

• unique_ptr is, as you imagine, unique, so we
shouldn’t perform copy on it. Copy constructor is
marked as deleted.
• When a function returns an unique_ptr, which is

later assigned to a new one, we can let the new
one ‘steal’ the underlying raw pointer, and reset
the old one, in the move constructor.
• To explicitly do such ‘stealing’ on an lvalue (call the

move constructor which accepts only rvalues), we
do std::move.

Q&A

