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ABSTRACT

Knowledge Tracing (KT) aims at tracing the evolution of the knowl-
edge states along the learning process of a learner. It has become
a crucial task for online learning systems to model the learning
process of their users, and further provide their users a personalized
learning guidance. However, recent developments in KT based on
deep neural networks mostly focus on increasing the accuracy of
predicting the next performance of students. We argue that cur-
rent KT modeling, as well as training paradigm, can lead to models
tracing patterns of learner’s learning activities, instead of their
evolving knowledge states. In this paper, we propose a new archi-
tecture, Diagnostic Transformer (DTransformer), along with a new
training paradigm, to tackle this challenge. With DTransformer,
we build the architecture from question-level to knowledge-level,
explicitly diagnosing learner’s knowledge proficiency from each
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question mastery states. We also propose a novel training algo-
rithm based on contrastive learning that focuses on maintaining
the stability of the knowledge state diagnosis. Through extensive
experiments, we will show that with its understanding of knowl-
edge state evolution, DTransformer achieves a better performance
prediction accuracy and more stable knowledge state tracing results.
We will also show that DTransformer is less sensitive to specific
patterns with case study. We open-sourced our code and data at
https://github.com/yxonic/DTransformer.
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1 INTRODUCTION

With the advent of massive learning resources and online learning
systems in the web, it becomes more and more popular for stu-
dents and other general learners to choose web as a major media
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Figure 1: An example of stable knowledge tracing. DTrans-
former traces knowledge evolution of a learner, then predicts
responses on future questions (a), instead of predicting re-
sponse patterns and then inferring knowledge states (b).

of learning [18, 29]. As online learning activity data begin to accu-
mulate, understanding human learning process behind them plays
an important role in online learning services [3, 17].

Generally speaking, human learning process involves two parts,
gaining knowledge from previous experiences, and applying knowl-
edge to solve future challenges [9]. During the process, each learner
has an interior understanding, or technically speaking, a hidden
knowledge state, that represents the acquisitions from their past
experiences, and the evolution of the knowledge state represents
the process of learning. In order to understand human learning pro-
cess better, it is crucial to explicitly model and trace the evolution
of the otherwise invisible knowledge states, which is exactly the
focus of Knowledge Tracing [4, 22].

Researchers use the term Knowledge Tracing (KT) to refer to the
task of tracing the knowledge state based on the learning activities
of alearner [22]. For the importance of this problem, it has attracted
much attention from both academia and industry in the past few
years [15, 16, 31]. As the knowledge state cannot be directly learned
or evaluated, almost all of the previous attempts model KT as the
next performance prediction problem. Consequently, they either
produce unstable tracing results that tend to overfit to memorize
the exact sequence, or ignore student state tracing, only to gain
prediction performance [8, 10, 30].

Through our investigation, we find that it is inherently difficult
to trace states accurately in current KT paradigm. To understand
this phenomena, we first ask a fundamental question: what does a
model actually learn in their representation of student states? We
can say that, with current KT models and the sequential prediction
setup, most models are tracing patterns of the learners’ activities,
instead of knowledge that learners themselves acquire. Figure 1
gives an example of learning process under real scenario, where a
learner answers questions sequentially and internalizes knowledge
gradually along the process, as shown in Figure 1(a). With this
example, we further elaborate our conclusion from two perspec-
tives. First, current modeling of learning activity sequences fails to
capture interior dynamics specific to the learning process, follow-
ing or even reciting obvious patterns of the responses rather than
the underlying knowledge states. Researchers have to introduce
empirical constraints to match the psychological and educational
background [30], while inferring stable and consistent knowledge
states from the learning sequences remains challenging. Second,
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most of the recent models suffer from the information bias problem,
i.e. the inferred knowledge state changes dramatically after the
learner gets a different response [23]. This often makes their infer-
ence of knowledge states unstable, as demonstrated in Figure 1(b).

Trying to really trace knowledge instead of patterns in knowl-
edge tracing, in this paper, we present a novel architecture, as well
as a new paradigm, for more stable knowledge tracing. Specifi-
cally, to capture deeper learning dynamics along the learning pro-
cess, we propose a new architecture for diagnosing knowledge
states from sequential learning activities, the Diagnostic Trans-
former (DTransformer). Then, to alleviate information bias in
the sequential prediction task, we design a new training algorithm
based on contrastive learning that helps produce stable tracing re-
sults. In the end, we conduct experiments on 4 real-world datasets,
showing that our proposed framework is able to trace knowledge
state evolution more accurately. Furthermore, we present several
visualization results that shows DTransformer can provide a more
stable estimation of learner knowledge proficiency. We summarize
the key innovations of our work as follows:

o We design a new architecture, DTransformer, to extract hid-
den knowledge state from sequential learning activities. As
far as we know, this is the first Transformer-based architec-
ture that focuses on stable knowledge state estimation and
tracing, instead of solely next performance prediction.
Inside DTransformer, we design a Temporal and Cumulative
Attention (TCA), and build the architecture from question-
level to knowledge-level. We specifically design a knowledge
diagnosis extractor that explicitly diagnoses learner’s knowl-
edge proficiency from their question mastery states.

e We propose a novel training algorithm for KT that helps with
stable tracing. Based on contrastive learning, our algorithm
is able to maintain the stability of knowledge states that are
diagnosed from similar learning histories, alleviating the
information bias problem shared by most previous works.

2 RELATED WORK
2.1 Knowledge Tracing

Knowledge tracing is an important topic in all kinds of learning
setups, including online learning [4]. This task is traditionally tack-
led from the perspective of cognitive science and psychology [4, 5]
or probability [33]. Recently, more researchers incorporate deep
learning into knowledge tracing, for its expressiveness and perfor-
mance boost. Most recent work can be divided into two categories:
recurrent neural network (RNN) based and attention (or Trans-
former) based. Both approaches view learning activities (exercising
records) of a learner as a sequence, and focus on the task of the
next performance prediction along the sequence [14, 22, 34].

Though effective, these methods experience inconsistencies with
the actual learning process. The states these model are tracing often
reflect the patterns of the learning activities of learners, instead
of their evolving knowledge states. Works such as DKT+ [30] and
LPKT [23] try to include constraints based on observations in hu-
man cognitive process to alleviate this problem. Nevertheless, it is
still challenging to trace internal knowledge states from the next
performance prediction task only.
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Figure 2: The overall architecture of DTransformer. Left shows the DTransformer model architecture from question-level to
knowledge-level, based on Temporal and Cumulative Attention (TCA) mechanism. Right shows the contrastive loss of our
proposed algorithm that helps maintain tracing stability, as well as the prediction loss for the task.

Inspired by Transformer [28] from natural language processing
field, some recent works such as SAKT [19] and AKT [8] aim at
using attention mechanism to model learner sequences more ef-
fectively. However, these attention based models mainly focus on
sequential performance prediction accuracy, but ignores the need
of tracing the evolution of knowledge states. In fact, through atten-
tion mechanism, these models mostly predict student performance
according to learner’s previous performance on relevant questions,
instead of their current knowledge state.

2.2 Contrastive Learning

Contrastive learning (CL) is a technique that helps models learn
high-level intrinsics in the final representations without relying
on extreme details. We use this technique in this paper to assist
our model with stability and consistency in knowledge tracing,
without relying much on particular previous experiences and learn-
ing activity patterns. Previously, most work in contrastive learn-
ing focuses on representation learning in computer vision[2, 27].
Recently, representation learning in the fields such as graph em-
bedding and sentence representation also incorporates contrastive
learning in their workflows [7, 32]. A few recent works also try to
incorporate contrastive learning in knowledge tracing. Song et al.
[24] model the KT problem as bipartite graph to introduce graph
contrastive learning techniques into KT, with the assistance of a
external exercise-exercise graph. Lee et al. [13] propose CL4KT
based on the AKT [8] architecture, to reveal semantically similar or
dissimilar relations of the learning history. However, these works

are certainly at an early stage, not explicitly taking the stability and
consistency of the internal knowledge states into consideration.

3 METHODOLOGY
3.1 Problem Definition

In online learning systems, each learner’s learning activities consist
mostly of exercising records, i.e. a sequence of questions and the
corresponding responses. For learner i at time step ¢, they will
answer a question qt € Q drawn from a knowledge concept c; € C,
and get response r; € {0, 1}, denoting whether the learner correctly
answer the question (r;' = 1) or not (r;' = 0). Thus, for each learner,
we have their exercising records as a sequence:

{(gq1,¢c1,71),-- s (qTsersr1)}s qr € Qcr € Corr € {0,1}, (1)

where T is the length of the learning sequence, Q is the set of all
questions, C is the set of all knowledge concepts.

The learning sequence reflects the evolving knowledge pro-
ficiency of a learner, but the exact internal knowledge states of
learners remain implicit. Therefore, aiming at tracing the evolving
knowledge states at each time step ¢ according to previous exer-
cising records, we define our problem of Knowledge Tracing (KT)
formally as follows:

Definition 3.1. (Knowledge Tracing Problem) Given the previ-
ous exercising records of a learner before time step t as a sequence
{(q1,c1,71),- .., (qs, ¢, re) }, the goal is to: (1) trace the internal
knowledge state z; at time step ¢ of this learner; (2) predict the
response 741 of them on the next question gs41.
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In contrast with many of the previous works, our focus here is
not only predicting future performance of each learner, but also
keeping track of the evolution of their internal knowledge states.
Specifically, one of our goals is to learn how well a learner master
each knowledge concept along the whole learning process.

3.2 DTransformer Architecture

The overall architecture of DTransformer is shown in Figure 2.
From a higher perspective, DTransformer architecture consists of
two parts. The question-level mastery estimator takes the question
q: and score s; sequences as input, and generates context-aware
question mastery vectors m;. The knowledge-level diagnosis ex-
tractor on the other hand, diagnose knowledge-level proficiency
z; at each time step t from all previous question-level mastery es-
timations. To break strong pattern dependencies experienced by
most previous models, both modules are based on multi-head at-
tention mechanism with temporal effects that align with learning
behaviors.

3.2.1 Temporal and Cumulative Attention (TCA). The attention
mechanism is the building block of DTransformer, for it breaks
the strong sequential dependency between adjacent inputs mostly
seen in RNN-based models. It helps the overall model to be less
pattern-sensitive, focusing on learning the internal state transition.
Inspired by the Monotonic Multi-head Attention first introduced in
AKT [8], we design a Temporal and Cumulative Attention (TCA)
mechanism, with explicit considerations of: (1) the temporal effect
in the learning process, and (2) the cumulative effort. This better fits
the learning activity sequence than the plain multi-head attention
mechanism in the original Transformer [28], which empowers the
knowledge state estimation of DTransformer later on.

Considering temporal effect in the learning process in the atten-
tion mechanism, following [8], we have:

QKT . e—9~d(At)

Vi

where 0 is the parameter that controls how strong the temporal
effect should add up to the final weights, and d(At) is the distance
function that measures how far away a query and a key are, sequen-
tially and semantically (following Ghosh et al. [8]). The temporal
effect decays exponentially as the distance go further, following
the intuition that learning experiences long ago have less impact
on current learning states.

While attention with temporal effect is able to aggregate relevant
experiences, we argue that weighted sum of all these experiences
ignores the cumulative effort in learning process. A learner can trial
on a single concept or question for several times until they master
it, but in current weighted aggregation, these repeated efforts are
in no difference with a single experience. Therefore, we extend
the current attention scores with a max-out operation, modeling
cumulative learning gain in past experiences. Specifically, we have
our new attention calculation:

AttentionT(Q, K, V) = softmax

) v, (@

OKT . ¢=0-d(81)
AttentionMax(Q, K, V) = MaxOut T V, (3)
k
softmax(x;)
MaxOut(x;) = . 4
axOut(xi) max j {softmax(x;)} )
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Figure 3: Question-level mastery estimator.

MaxOut scales the largest softmax score up to 1, and retains the
proportion of all other scores. This allows the attention to scale the
results when aggregating with regard to relevant sequence length.

Finally, we expand the attention into multiple heads to consider
multiple aspects when aggregating and make the final result more
robust. In multi-head attention, Q, K and V are linear transformed
and then split into H heads:

MultiHead(Q, K, V) = concat(heady, . . ., head;) W° (5)
where head; = AttentionMax(QWiQ, KWiK, VWl-V). (6)

WQ, WX, WV refers to the linear transform parameters. In the full
DTransformer layer, we first conduct multi-head attention, then
include residual connection [26] as well as layer normalization [1].
Formally, we define the DTransformer layer that we use across the
whole architecture as:

DTransformerLayer(Q, K, V) =
LayerNorm(MultiHead(Q, K, V)) + Q. (7)

3.2.2  Question-level mastery. With TCA mechanism that we de-
fined, we are able to estimate learner’s internal knowledge states
from past learning experiences. We will ask two questions along
the process: (1) How well does the learner actually master each
question they exercised? (2) How proficient is the learner with
all the knowledge concepts at this step? This leads to a two-step
solution of DTransformer, which estimate question-level mastery
first, then diagnose knowledge-level proficiency.

To estimate learner’s question-level mastery, we first obtain a
more accurate understanding of how well the learner does on each
question. Learner can correctly or incorrectly answer a question, but
their mastery of this question is not determined by their response.
To accurately estimate how well a learner master a question, we
need to incorporate more context relevant to this question. We
first incorporate Rasch embedding [8] to get question embedding
sequence q and learning activity embedding sequence a from the
original question and score sequence (see Appendix A.1). Then,
we incorporate TCA that we described in the previous section to
obtain a context-aware question mastery estimation. Within each
head, we aggregate learner’s performance on relevant questions
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for each question g at time step ¢ as:

T
K
ar = softmax & . e—€~d(t—r) , ®)
d
oQF K [Nd - e70d(=7)
) =T ©)
21?:1 thTKi/\/(E . e=0-d(t-i)
t
my = Z at’,[ . Vz’, (10)
=1

where Q[ =4qt - WQ, K[ =4qt - WK, V[ =a - WV. (11)

Finally, we combine each head m; together following Eq (5),
and apply residual connection and layer normalization afterwards.
Together we obtain a question-level mastery vector m; for each
question gq; that takes previous experiences into consideration.

3.2.3 Knowledge-level diagnosis. After we obtained a more accu-
rate question-level mastery for each learner, next we diagnose
knowledge-level proficiency from them. To diagnose at knowledge-
level, the intuition is to use knowledge instead of question as atten-
tion query. Knowledge queries should be used consistently through
the whole sequence, so that we trace knowledge state transition of
the learner themselves, instead of their mastery of each individual
questions. To this end, we randomly initialize a set of knowledge
parameters K = {Kj,...,Kn} in DTransformer, and use them as
the query in the knowledge-level extractor. We use N knowledge
parameters to represent N knowledge concepts that learners inter-
nalize during the learning process. Formally, for each knowledge
concept n at time step ¢, the knowledge-level proficiency z; , within
each head is calculated as:

T
K,
Qt,n,r = softmax & . em0d(t-7) , (12)
vk
eQn Ke/Vdj - e704(t=D)
= —, (13)
Z;:l eQF K[ Vdy - e=0d(t=1)
t
Ztn = Z atnz Ve, (14)
=1

where Op =K, - W?, K; =q; - WK, Vi=my - WY, (15)

At last, we also combine each head z; , together as proficiency
estimation z; , for knowledge concept n following Eq (5). All the
proficiency estimations of the N knowledge concepts then represent
the internal knowledge state at time step ¢ of a learner:

Zt:{Zt’nlflzl,...,N}. (16)

3.3 Model Training

In previous works, the training process only focuses on the task of
next performance prediction, i.e. predicting the probability for a
learner to answer the next question correctly. This leads to two con-
sequences: (1) models tend to learn patterns of learner’s answering
sequence, instead of the internal knowledge transition. (2) learner’s
knowledge state often experience huge leaps after the model get
new information of their performance, which is the information
bias problem. Both of the problems cannot be tackled properly un-
der the current training framework. Therefore, in the following
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Figure 4: Knowledge-level diagnosis extractor.

subsections, we introduce a new training pipeline for more stable
knowledge tracing.

Our training process consist of two main components, as shown
on the right of Figure 2. First, we maintain a consistent diagnosis of a
learner’s knowledge state, through a contrastive loss function. Then,
we trace learner’s next performance directly from their knowledge
state evolution. Further details are described below.

3.3.1 Contrastive loss of knowledge states. The first part of the
training process is contrastive loss of knowledge states. Our goal
is to maintain a consistent knowledge state for each learner that
reflects their internal knowledge proficiency, and be less sensitive
to individual responses they get. The intuition here is, if a learner
had a different response on one particular question throughout the
entire learning history, the learner’s final knowledge state shouldn’t
see a huge difference. This inspire us to design a contrastive loss
for knowledge states, to maintain the consistency and stability of
knowledge states.

Following previous works on contrastive learning [2, 7], we
first augment the learning activity sequence of a learner. Then we
proceed to use DTransformer to extract knowledge states from
both sequences. Finally we incorporate a contrastive loss to draw
positive pairs of knowledge states (those from the sequences of
the same learner) together, pushing away negative pairs. To reflect
the intuition we mentioned earlier, we design three augmentation
strategies. Specifically:

Flip Response: When a learner answers a question, they may
have a probability of getting right answers wrong (slipping) or
getting right answers accidentally (guessing). However, these occa-
sional glitches of learner’s response should not affect the internal
knowledge states. To reflect this intuition, we design the Flip Re-
sponse augmentation that randomly flips learner’s responses in the
learning sequence. Learner’s states should remain similar after this
augmentation, i.e. after they slip or guess some of the questions.
Drop Item: In this augmentation, we randomly drop questions in
learner’s sequence. This align with the intuition that learner’s state
is not affected much by only one question, but depends more on
the whole learning process.

Swap Adjacent Items: In the learning process of a learner, the
order of questions matters, but knowledge states should not be
dependent on small order perturbations. Thus, instead of doing
a full permutation as done by Lee et al. [13], we randomly swap
adjacent question-response pairs to perform localized augmentation
on order. Our model should learn similar knowledge states after a
few swapping in the sequence.
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We denote the input sequences after these augmentations as g*
and a*. Then we obtain the knowledge state of the augmented se-
quence as z; . Following previous work [2], we calculate contrastive
loss from a single batch. Specifically, for each knowledge state z; ;
of the learner i at time step t, we construct positive and negative
pairs within the current batch learner i is in. The contrastive loss
for learner i at time step ¢ is denoted as:

esim(zgi),z:’(i) )/t

CL
lt,i

=—log (17)

Zj#i esim(z".2/V) /7

where 7 is a temperature hyperparameter (set as 0.05 in our case),
and sim(z;, z;) is the cosine similarity function H:r,zlirﬁ

3.3.2  Next performance prediction. To trace the evolution of the
knowledge state, we do next performance prediction with current
knowledge state of a learner. Different from previous work [8],
here we only use knowledge state z; from current time step t. The
knowledge state z; we obtain at each time step ¢ consist of N
knowledge concepts. To predict how well a learner answers the
next question g;+1, we should only focus on learner’s proficiency
levels on relevant knowledge concepts. To this end, we propose
a new attentive read-out module for next performance prediction
using knowledge state z;. Specifically:

T,
T edr+1%it
a; = softmax(q;,,zit) = N T (18)
Zj:l e9r+1%)t

N

g1 = Z AjZit, (19)
i=1

Fra1=0 (concat(zqt+1,qt+1) . WA), (20)

where o is the Sigmoid function.
Therefore, we have the prediction loss on each time step t as
cross entropy loss:

Iy = —r1 log Fre1l — (1 — rt+1) log(l — f[+1). (21)

In the end, the overall objective function of DTransformer is
defined as a linear combination of the two loss functions:

L=l +1-1°E (22)

where A controls the influence of contrastive signals. We can then
train the whole model using gradient descent based optimization
algorithms, with regard of the objective function Eq (22). In our
setup, we use Adam [11] to optimize the objective function, and set
A = 0.1 for an optimal performance.

4 EXPERIMENTS

In this section, we first describe the real-world datasets and ex-
perimental setup that we use across all the experiments. Then we
demonstrate our results and observations aiming at answering the
following research questions:

e RQ1: Does DTransformer outperform state-of-the-art knowl-
edge tracing models on next performance prediction task?

e RQ2: Is DTransformer able to maintain the stability and
consistency of knowledge states while tracing each learner?

Yu Yin, et al.

Statistics assist@9 assist17 algebrad5 statics
Learners 4,217 1,079 574 331
Questions 26,688 3,162 1,084 -
Concepts 123 102 138 154
Responses 346,860 942,816 809,694 142,124
Avg. Length 82.25 873.79 1,410.62 429.38

Table 1: Statistics of 4 real-world datasets in this paper.

¢ RQ3: How much does knowledge diagnostic module and
contrastive learning contribute to the knowledge tracing
performance of DTransformer?

e RQ4: How does DTransformer help tracing the evolution of
knowledge states?

4.1 Datasets

We use 4 real-world datasets with diversity to evaluate the effec-
tiveness of DTransformer in different learning scenarios. Table 1
shows the statistics of all the datasets. We introduce and compare
each dataset as follows:

e assist09! refers to a dataset collected from ASSISTment, an
online tutoring system created in 2004. We use the updated
skill-build version of this dataset as it fixes data modeling
issues and removes duplicated records [6].

e assist172 is another dataset collected from ASSISTment,
but learners have much longer learning sequences. In this
dataset, learners can trial many times on a single question
until they get it right. Thus, it is essential for models to
consider cumulative effect in the learning process [21].

e algebra05> was presented at the KDDcup 2010 Educational
Data Mining challenge and contains student responses to
Algebra questions from 2005 to 2006 [25].

e statics* dataset contains student interactions with ques-
tions related to the Engineering Statics course taught at
the Carnegie Mellon University during Fall 2011. Compared
with others, this dataset shows examples of higher education
learning process [12].

4.2 Experimental Setup

To evaluate our model, we compare our model with state-of-the-art
knowledge tracing models on all the datasets we mentioned earlier.
The details of all the baseline methods that we use are described in
Appendix A.2. For each dataset, we split 80% students as training
set, and 20% students as test set. All hyper-parameters are tuned
based on a standard 5-fold cross validation for a fair comparison.
We implemented our model, as well as most of the deep learning
based baseline models, under a unified framework developed using
PyTorch [20]. However, we did not implement CL4KT under our
framework as it has a different data processing mechanism, and
use results reported by the original paper. All models are trained
on a cluster of Linux servers with NVIDIA TITAN V100 GPUs. All
models are tuned to their best performance for a fair comparison.

Uhttps://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data
Zhttps://sites.google.com/view/assistmentsdatamining
3https://psledatashop.web.cmu.edu/KDDCup
*https://psledatashop.web.cmu.edu/DatasetInfo?datasetld=507
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Dataset Metrics DKT DKT+ DKVMN SAKT AKT CL4KT DTransformer - (w/o CL)
assist09 MAE 0.4105 0.3581 0.3132 0.3342  0.3459 - 0.3097 0.3033
RMSE 0.4387 0.4172 0.4161 0.4194 0.4172 0.4333 0.4007 0.4062
ACC 0.6482 0.7438 0.7458 0.7418 0.7418 - 0.7632 0.7579
AUC 0.7908 0.7853 0.7891 0.7783  0.7868 0.7624 0.8146 0.8056
assist17 MAE 0.4143 0.4385  0.4064  0.4207 0.3867 - 0.3760 0.3831
RMSE 0.4543  0.4655 0.4543 0.4609  0.4385 - 0.4371 0.4404
ACC 0.6971 0.6633 0.6775 0.6735 0.7071 - 0.7078 0.7010
AUC 0.6809 0.6540  0.7024  0.6726  0.7464 - 0.7506 0.7451
algebrae5 MAE 0.3498 0.2774 0.2315 0.2304  0.2319 - 0.2201 0.2302
RMSE  0.3798 0.3630  0.3424  0.3406 0.3454 0.3815 0.3403 0.3423
ACC 0.8263  0.8337 0.8315 0.8337 0.8361 - 0.8424 0.8392
AUC 0.7558 0.7138 0.7857 0.7819  0.7750  0.7891 0.7946 0.7878
statics MAE 0.3828 0.3215 0.2635 0.2557 0.3017 - 0.2612 0.2797
RMSE 0.4087 0.3956 0.3801 0.3786  0.3908  0.3945 0.3621 0.3632
ACC 0.7355 0.7727 0.7910 0.7887  0.7757 - 0.7962 0.7948
AUC 0.8182 0.7807 0.8265 0.8299 0.7938 0.7943 0.8382 0.8341

Table 2: The overall performance comparison on 4 real-world datasets. We compare our full model (DTransformer), as well as
our model without contrastive loss (w/o CL), with state-of-the-art KT methods. We can see that DTransformer has the best
performance on almost all metrics on 4 datasets. Without contrastive loss, it still outperforms other models on several datasets.
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0.324
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Figure 5: T+N prediction performance on algebra05.

4.3 Overall Performance (RQ1)

The main goal of KT is to trace the evolution of the internal knowl-
edge states. However, it is not possible to directly measure how
accurate the state estimation is. To evaluate the effectiveness of KT
models, we will compare all the methods on the next performance
prediction task. As shown in Table 2, we compare our model with
all the baseline methods on all 4 datasets, under the metrics of
Mean Absolute Error (MAE), Rooted Mean Squared Error (RMSE),
Accuracy (ACC) and Area Under Curve (AUC). There are several
important observations from the table. First, DTransformer with
proper contrastive setup has the best performance under most
metrics, while DTransformer without contrastive loss outperforms
outperforms all baseline models on 3 of the datasets. For most of the
datasets, the effectiveness of knowledge states estimated by DTrans-
former is strong enough to produce more accurate prediction. As
for assist17 dataset where AKT shines, our model still outper-
forms it with the help of the contrastive loss. Second, compared
with results reported by CL4KT [13], our contrastive loss boost the
performance of the original model even more. Both CL4KT and
ours incorporates attention mechanism, and the result proves our
modeling to be more effective.

N 1 2 4 8
AUC

16 32

0.7759 0.7812 0.7842 0.7922 0.7946 0.7943

Table 3: Prediction AUC on algebra05 with different N.

A 0.0001
AUC 0.7906 0.7946 0.7854 0.7821

0.001 0.01 0.1

Table 4: Prediction AUC on algebra05 with different A.

4.4 Stability of Knowledge Tracing (RQ2)

One of the main contributions of our model is being able to produce
stable knowledge state tracing. We demonstrate this by conducting
anovel T+ N prediction experiment. Specifically, at each evaluation
step t, instead of predicting only next performance, we predict
learner’s response for questions at step t+ 1, t + 2, ... ., and evaluate
how fast each method regress as duration gets longer. The result
is shown in Figure 5. We can see that the prediction performance
of DTransformer does not decline too quickly compared with DKT
and AKT. This indicates that DTransformer maintains a relatively
more stable knowledge state. Details of how this experiment is
conducted are described in Appendix A.3.

4.5 Parameter Sensitivity (RQ3)

To demonstrate the effectiveness of the knowledge diagnostic mod-
ule as well as the contrastive loss, we train our model with different
setups and compare the outcome. We set the number of knowledge
parameters N from 1 to 32, and show the prediction AUC of each
setup on algebra®5 dataset in Table 3. We can see that number of
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(a) Knowledge tracing along a learning sequence.
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(c) Knowledge-level attention visualization.

Figure 6: Visualization of DTransformer tracing knowledge of a learner along their learning sequence. We can see that
the knowledge states traced by DTransformer is stable and not sensitive to response changes or patterns. In the attention
visualization heat maps, we can also see where the tracing results come from and how DTransformer makes use of them.

knowledge parameters play an important role in extracting accu-
rate diagnosis. With more knowledge parameters, the performance
generally goes higher. The performance on N = 16 and N = 32
are similar, indicating model overfitting for larger N. We also set
the A hyperparameter for contrastive loss term in Eq (22) as differ-
ent values and show the performance in Table 4. We can see that
contrastive constraints that are either too large or too small, has
a noticeable impact on the final performance. According to these
results, we set N = 16 and A = 0.001 across all the experiments.

4.6 Visualizations (RQ4)

To further understand how DTransformer traces the evolution of
knowledge states, in this section, we demonstrate the tracing pro-
cess with several visualizations of a learning sequence.

The most interesting and useful aspect of knowledge tracing may
be to predict how much a learner masters each knowledge concept
at any time step along a learning sequence. With DTransformer,
we can use the explicitly extracted knowledge state z; to estimate
the mastery levels of each knowledge concepts. Specifically, we use
embeddings of each knowledge concept as query and go through
the attentive read-out module. The predicted probability should
reflect the mastery level of this concept. More details about this are
described in Appendix A.4. Following this scheme, we sample a real
learning sequence and show our estimation of evolution of mastery
levels on each knowledge concept in Figure 6a with DTransformer.
Each row shows the estimation of the knowledge state evolution
of a single concept along the learning sequence. The circles on top
and left of the figure shows which knowledge concept this row or
column is related to. Circles with white dot in it indicates that the
learner answers this question wrongly. From the visualization, we
can see that our model generates stable and consistent knowledge
states, with considerations of temporal decay and cumulative effort.
We can see the learner gains acquisition of a knowledge concept
along with their exercising, even if the learner answers a question
wrongly at first. This aligns with the intuition that human can learn

from their mistakes. We can also see the learner forgets what they
learned before as time goes by.

We also demonstrate the attention weights of both question-level
and knowledge-level along the tracing process in Figure 6b and 6c.
On question level, each position (i, j) shows the attention weight
of question g; when DTransformer estimates question mastery of
question g;. We list a few heads, showing each attention head either
focus on the question g; itself, or checks on recent similar questions.
On knowledge level, we show attention weights of each knowledge
parameter to each of the previous records, across the entire learning
sequence (¢ = 10, 20, 30, 40) in Figure 6c. At each time step, this fig-
ure shows where the knowledge proficiency diagnosis is extracted
from for each individual knowledge concept. We can see that our
model tries to estimate question mastery more accurately by look-
ing back to the sequence, and generates knowledge states based on
relevant records across whole sequence of learning. We can also
see the effect of Temporal and Cumulative Attention mechanism.
On each figure, we can see the attention weights decay over time,
matching the temporal effect in the learning process. It also reflects
cumulative effort of a learner by accumulating weights throughout
the whole sequence at knowledge-level.

5 CONCLUSION

In this paper, we discussed the instability of KT caused by tracing
patterns instead of knowledge in current KT paradigm. We tackled
this challenge with a novel architecture, DTransformer, along with
a new training paradigm. Specifically, we designed a two-level
framework to explicitly diagnose learner’s knowledge states, and
increased stability of knowledge state diagnosis by a new training
algorithm based on contrastive learning. We hope our work has a
positive impact on KT research as well as more general research
areas such as user modeling and understanding.
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A APPENDICES
A.1 Learning Activity Embedding

Exercising records of a learner consist of discrete question and
concept indexes, as well as binary responses. Before we feed the
learning activity sequence into our model, we should first obtain
real-valued embedding vectors from the exercising record sequence.

Embedding all questions and concepts into separate vectors can
be expensive and overwhelming. Following previous work [8], we
embed all question-concept pairs based on Rasch Model to avoid
over-parameterization. Specifically, we construct the embedding of
the question g; from concept c; as:

q: =cc, + Hg, " de,, (23)
where ¢ embeds knowledge concepts into vectors, d summarizes
the variations of questions within this concept, and y is the scalar
difficulty parameter that indicates the deviation of a particular
question from its relevant concept.

In addition, we embed questions along with response signals r;
into the learning activity embedding a;:

ar =cc, + gr, + lg, * ferres (29)
where g embeds learner’s response to a question, f summarizes
the variations of learning activities within this concept, concept
embedding ¢ and question difficulty y are as defined earlier.

Question-concept embedding q; and activity embedding a; play
an important role in later sequential modeling. Using these embed-
ding sequences as input, DTransformer is able to diagnose knowl-
edge state z for each learner at each time step.

A.2 Baselines

In this paper, we compare DTransformer with several previous
methods. The details of all the comparison methods are:

e DKT [22] leverages recurrent neural network to trace stu-
dent knowledge states. For an up-to-date performance, we
utilized LSTM in our implementation.

e DKT+ [30] is an extended variant of DKT [30], which at-
tempts to solve reconstruct and consistency problems in DKT.
The second problem of DKT performance across time-steps
being not consistent, is also addressed in DTransformer.

e DKVMN [34] takes advantage of memory network to get
interpretable student knowledge state [34]. It defines key
and value memory matrices and update the corresponding
knowledge state through memory read and write operations
over time.

e SAKT [19] is the first self-attentive knowledge tracing model.
It exploits a Transformer architecture to capture long-term
dependencies between learning interactions of learners.

e AKT (8] is the context-aware attentive knowledge tracing.
It uses the two self-attentive encoders and a knowledge ex-
traction module to predict future performance of students.

Yu Yin, et al.

e CL4KT [13] is based on AKT, but include contrastive learn-
ing to overcome sparsity. It designed 4 data augmentation
methods based on hypothesis about student learning process.

A.3 T+N Prediction

The T + N prediction experiment that we propose is a way of show-
ing how stable the knowledge state tracing is. In this experiment,
we evaluate the knowledge states z; that DTransformer diagnosed
for each time step t. More stable knowledge states can be used to
predict student performance not only on the next exercise, but to
estimate more accurately on more exercises in the next period of
time. Therefore, we first assume the knowledge state is stationary
after time t, and predict the student’s performance at time step
t+1,t+2, ..., with the same knowledge state. Specifically, for
prediction on time step t + n, we calculate the probability of the
student answering question g;4, correctly as:

T
T eQr+n?it
a; = softmax(qy,,zit) = N (25)
Zj:l e9t+n%J,

N

Zqpan = Z aizit, (26)
i=1

Fran =0 (concat(zqtm, qt+n) WA) . (27)

Afterwards, we aggregate performance for each n in t + n predic-
tion on all time steps. The results, shown in Figure 5, hence displays
how fast the prediction performance decreases over n, reflecting
the stability of the knowledge states.

A.4 Knowledge tracing with DTransformer

With DTransformer, we are able to do explicit knowledge profi-
ciency tracing by predicting how much a learner masters each
knowledge concept at any time step along a learning sequence.
This is done by using knowledge parameters K to query the knowl-
edge state z; at each time step ¢. Each knowledge parameter K,
represents the latent knowledge concept that DTransformer learns
along the process, and thus we use it as the query in the attentive
read-out module defined in Sec 3.3.2. Specifically, for each knowl-
edge concept n, we calculate their proficiency level of the student
at time ¢ as:

KTz
T en it
an,i = softmax (K, zi;) = N (28)
Zjil eftnZjt
N
Znt = ) @nizig, (29)
i=1
Pt =0 (concat(zn,t,Kn) . WA) . (30)

To display knowledge tracing results as in Figure 6a, we further
match the latent knowledge concept with real knowledge concepts
by matching knowledge parameters with the knowledge concept
embeddings c. In this way, we are able to visualize the internal
evolution of knowledge states for students.
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