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Monitoring Student Progress for Learning
Process-consistent Knowledge Tracing

Shuanghong Shen, Enhong Chen, Qi Liu, Zhenya Huang, Wei Huang, Yu Yin, Yu Su, Shijin Wang

Abstract—Knowledge tracing (KT) is the task of tracing students’ evolving knowledge state during learning, which has improved the
learning efficiency. To facilitate KT’s development, most existing methods pursue high accuracy of student performance prediction but
neglect the consistency between students’ dynamic knowledge state with their learning process. Moreover, they focus on learning
outcomes at a single learning interaction, while student progress at continuous learning interactions is more instructive. In this paper,
we explore a new paradigm for the KT task and propose a novel model named Learning Process-consistent Knowledge Tracing
(LPKT), which captures the evolution of students’ knowledge state through monitoring their learning progress. Specifically, we utilize
both the positive effect of the learning gain and the negative effect of forgetting in learning to calculate student progress in continuous
learning interactions. Then, considering that the rate of progress is student-specific, we extend LPKT to LPKT-S by explicitly
distinguishing the individual progress rate of each student. Extensive experimental results on three public datasets demonstrate that
LPKT and LPKT-S could obtain more appropriate knowledge states in line with the learning process. Moreover, LPKT and LPKT-S
outperform state-of-the-art KT methods on student performance prediction. Our work indicates a promising future research direction for
KT, which is highly interpretable and accurate.

Index Terms—Educational Data Mining, Knowledge Tracing, Student Progress, Learning Process, Learning Gain, Forgetting Effect

✦

1 INTRODUCTION

R ECENT years have witnessed the rapid development of
online learning [1], which plays an indispensable role

in realizing better education [2, 3]. Knowledge tracing (KT)
[4] is an emerging research area in online learning, which
utilizes machine learning sequence models that are capable
of using educationally related data to monitor students’
changing knowledge states [5, 6, 7, 8]. In online learning sys-
tems, students can achieve knowledge mastery by answer-
ing different exercises. In turn, we can also infer students’
knowledge states and predict their future performance by
their learning sequences, which is formalized as the KT
task [4, 9]. Specifically, given students’ historical learning
sequence, including exercises and answers, the KT task aims
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to measure students’ knowledge states at different time
steps, and their future performance can be predicted by the
related knowledge states [10]. Meanwhile, after understand-
ing students’ knowledge states, students and instructors can
avoid wasting time on well-mastered knowledge concepts
and pay more attention to those with poor mastery. In this
way, KT can enhance learning and teaching simultaneously.

Existing KT models measure students’ knowledge states
by their learning sequences. For example, Bayesian Knowl-
edge Tracing (BKT) applied Hidden Markov Model in the
KT task [4], Deep Knowledge Tracing (DKT) introduced
RNNs/LSTMs [11] to model student learning [12] and
Exercise-aware Knowledge Tracing utilized the text infor-
mation of exercises [13], which helped to further understand
the exercises for better learning sequence modeling. They
assumed that higher accuracy in future performance pre-
diction is equivalent to a better estimate of the knowledge
state. However, in the experiments of our previous work
[14], we have noticed that pursuing only high accuracy of
future performance prediction could lead to inconsistency
between students’ knowledge states and their learning pro-
cess. For better illustration, we give a visualization case of
the knowledge state traced by DKT, a popular KT model
that has achieved impressive performance [12]. In Figure 1,
while the student was answering 12 different exercises on
3 different knowledge concepts, DKT traced the evolving
process of his/her knowledge state. It is easy to find an
obvious observation from the figure: Once the student got
wrong answers (e.g., e2, e3, e4, e8, and e12), DKT thinks that
his/her knowledge state will correspondingly decline (e.g.,
the knowledge state on the knowledge concept 70: Square
Root drops from 0.85 to 0.7 after wrongly answering e8).
Although such a downward trend after mistakes may bring
higher accuracy to students’ future performance prediction,
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Exercises

Answers

Knowledge Concepts

70: Square Root

89: Ordering Fractions  

176: Equation Solving 
Two or Fewer Steps 

Fig. 1. A toy example of the evolution process of a student’s knowledge state traced by DKT, where the student has answered 12 exercises on three
knowledge concepts. The number in the small box refers to the knowledge state after answering the exercise, where the darker the color in the heat
map, the higher the knowledge mastery. The red boxes emphasize that DKT thinks the knowledge state will decline after wrong answers.

it is not in line with students’ cognitive processes. Actually,
students can consistently acquire knowledge as long as they
have practiced, whether the answer is correct or not. Previ-
ous research has also pointed out that mistakes are seen as
natural and significant elements of the learning process [15],
and students can learn from errors and foster knowledge
acquisition through a favorable error climate [16].

On the other hand, under the guidance of seeking more
accurate future performance prediction, existing KT meth-
ods choose to focus on students’ learning outcomes at a
single learning interaction (e.g., the student got the correct
answer on e1 at the first learning interaction in Figure 1).
In this paper, we further find that the student progress in
continuous learning interactions brings more significance to
making effective learning schemes. In other words, model-
ing the learning outcome can only capture if the student
has learned the particular knowledge concepts, but not if
the student is learning at a pace that will allow completing
his/her learning goals [17]. Besides, it may be too late to
make effective changes to improve students’ achievement
when they receive their learning results [18]. Therefore,
monitoring student progress is more instructive in teaching
and learning practice.

To this end, we argue that although the predicted accu-
racy of student future performance and students’ learning
outcomes are significant for the KT task, it is essential to
maintain the consistency of the knowledge state and the
learning process. Besides, more attention should be given to
students’ learning progress in continuous learning interac-
tions, which helps improve the quality of online education.
In this paper, we aim to explore a new paradigm for the KT
task by monitoring student progress in learning. However,
there are many challenges to be solved along this line. First,
it is unclear how to define the learning process and convert
it into a proper form for modeling. Second, the student
progress in continuous learning interactions is hard to be
quantified. Specifically, two opposite factors will influence
student progress: (1) the positive effect of the learning gain,
which represents the knowledge that students acquire in
learning, is implicit and changeable in the learning process.
Although Mao [19] applied binary Quantized Learning Gain
(QLG) to instantiate students’ learning gains as High or
Low, such simple instantiation of the learning gain is not
enough to capture its diversity. (2) the negative effect of
forgetting [20], which means students’ knowledge will also
decrease over time. This common forgetting phenomenon

is also complicated but necessary to be considered. Third,
the rate of learning progress differs from student to student,
which should be distinguished to capture the individual’s
knowledge state.

To conquer the first two challenges, in our preliminary
work [14], we proposed a novel method named Learning
Process-consistent Knowledge Tracing (LPKT), which cal-
culated students’ learning gains and forgetting to reach
our primary goal of assessing students’ knowledge states
by monitoring their learning progress. Specifically, as the
learning process is presented as the learning sequence of
students, we first defined the basic learning cell in the
learning sequence as a tuple exercise—answer time—answer,
and adjacent cells were connected by the interval time,
forming the learning process. Notably, the learning cell
contains the time that students spend on answering the
exercise so that it is more capable of reflecting the complete
learning process. Then, to measure student progress, we first
directly computed the positive effect of the learning gain
from the difference between present and previous learning
cells. Besides, to capture the diversity of the learning gain,
we also modeled two significant factors: the interval time
between two continuous learning cells and students’ related
knowledge state. It is worth noting that the learning gain
is always positive in LPKT, which means that students
can consistently get knowledge at each learning interaction,
whether their answers are right or wrong. Furthermore, con-
sidering that not all learning gains can be transformed as the
growth of students’ knowledge, we designed a learning gate
to control students’ knowledge absorptive capacity. Subse-
quently, for the negative effect of forgetting, we developed a
forgetting gate to determine the decrease of knowledge state
over time. Finally, considering both the learning gain and
the forgetting, LPKT realized a novel way to assess students’
knowledge state by modeling their learning process.

In LPKT, we assumed that students have the same
progress rate, which does not hold in reality. Therefore,
in this paper, we extend the LPKT model to LPKT-S by
introducing a student-specific learning feature to explicitly
distinct students’ various progress rates. Specifically, when
calculating the learning gain, LPKT-S considers students’
individual knowledge absorptive capacity. For the forget-
ting, LPKT-S will compute how much knowledge will be
forgotten by different students. Extensive experiments on
three public real-world datasets demonstrate that LPKT
and LPKT-S get more appropriate knowledge states in line
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with students’ learning process. Moreover, LPKT and LPKT-
S can also significantly outperform existing KT models
on student performance prediction. LPKT-S achieves better
performance than LPKT as it has introduced the individual
student progress rate. Our idea to solve the KT problem by
modeling students’ learning progress indicates a potential
future research direction of high interpretability and accu-
racy. In summary, compared with our preliminary model
of LPKT [14], the main contributions of this paper are
summarized as follows:
• We propose to conduct knowledge tracing by monitor-

ing student progress at continuous learning interactions,
which has not been explored in our preliminary work [14].
The proposed LPKT model obtains a more reasonable
evolution of students’ knowledge state and state-of-the-
art results on student performance prediction.

• We further extend LPKT to LPKT-S, which explicitly dis-
tinguishes students’ different rates of learning progress.
Benefiting from introducing this student-specific feature,
LPKT-S achieves better performance than LPKT.

• We conduct extensive experiments to show the inter-
pretability of both LPKT and LPKT-S. The results indicate
that modeling student progress can give more instructive
feedback to students about their learning. Besides, LPKT
and LPKT-S can also learn meaningful representations of
exercises automatically.

2 RELATED WORKS

In this section, we briefly introduce the related works from
the following four categories.

2.1 Knowledge tracing
Most of the existing KT models can be classified into three
categories including probabilistic models, logistic models,
and deep learning-based methods. More specifically, BKT
[4] was a classic and widely-used probabilistic model for
KT, which could be seen as a specific application of the
Hidden Markov Model (HMM). Logistic models were a
large class of models based on logistic functions, which
utilized a logistic function to estimate the probability of
knowledge state [5], such as Performance Factor Analysis
(PFA) [21]. DKT introduced deep learning into KT for
the first time [12], which took the learning sequence as
the input of RNN or its variant LSTM and represented
student knowledge states by the hidden states. Dynamic
Key-Value Memory Networks (DKVMN) [22] introduced
memory-augmented neural networks into KT. It defined a
static matrix called key to store latent knowledge concepts
and a dynamic matrix called value to store and update the
knowledge mastery [22]. EKT [13] introduced text contents
to enhance the performance of the KT task. Convolutional
knowledge tracing (CKT) [23] applied the convolutional
windows to model students’ individualized learning rates
within several continuous learning interactions. The self-
attentive model for knowledge tracing (SAKT) [24] pre-
sented the self-attention mechanism to model the long-term
dependencies between learning interactions. Pandey and
Srivastava [25] developed a relation-aware self-attention
layer that incorporates the contextual information. Ghosh

et al. [26] presented a context-aware attentive knowledge
tracing (AKT) model, which utilized contextualized repre-
sentations of both exercises and knowledge acquisitions and
incorporated the attention mechanism with cognitive and
psychometric models. Shen et al. [27] considered the impact
of question difficulty on student learning in KT. Readers can
refer to Liu et al. [10] and Schmucker et al. [28] for a detailed
survey of recent development of KT.

2.2 Learning Gain
The learning gain broadly means the difference between
the skills, competencies, content knowledge, and personal
development at two points in time [29]. Learning gain dif-
fers from learning outcomes in that learning gain compares
performance at two points in time, while learning outcome
only concentrates on the output at a single point in time.
For example, students may not benefit from the exercise
even if he/she has already performed well on it. Luckin
et al. [30] calculated learning gain as LG = post−pre, where
pre and post were a student’s pre-test and post-test scores.
Normalized Learning Gain (NLG) [31] was a widely used
adjusted measurement, which was calculated as follows:

NLG =
post− pre

1− pre
, (1)

where 1 is the maximum score for pre- and post-tests. How-
ever, NLG may be problematic in certain circumstances,
such as even a slight decline in post-test score from the
pre-test could result in a significant negative in NLG if
the student had high pre-test scores. Mao [19] proposed a
qualitative measurement called Quantized Learning Gain
(QLG), which was a binary qualitative measurement of
students’ learning gains from pre-test to the post-test: High
or Low. They first split students into three groups based
on their scores. Then, if a student moves from a lower
performance group to a higher, he/she is a High QLG. On
the contrary, he/she will be a Low QLG. However, such a
simple instantiation of the learning gain is not enough to
capture its diversity.

2.3 Forgetting Effect
In real-world learning environments, forgetting is inevitable
[20]. The Ebbinghaus forgetting curve theory indicated that
students’ knowledge proficiency may decline due to the for-
getting factor [32]. Nedungadi and Remya [33] incorporated
forgetting based on the assumption that the learned knowl-
edge decays exponentially over time [34]. They utilized
an exponential decay function to update the knowledge
mastery level. Huang et al. [32] proposed the Knowledge
Proficiency Tracing (KPT) model to model students’ knowl-
edge proficiency with both learning and forgetting theories,
which dynamically captured the change in students’ profi-
ciency level over time. Nagatani et al. [35] made attempts
to improve DKT by considering forgetting effects, but they
only extended DKT by incorporating multiple types of time
or counts information.

2.4 Student Progress
Student progress is of great significance for teachers and
students to adjust teaching and learning strategies [18, 36].
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In contrast to mastery measurement, which tells whether a
student has understood the particular knowledge concepts,
monitoring student progress can evaluate the effectiveness
of the teaching strategy, and teachers can promptly adjust
instruction if the rate at which a specific student is learn-
ing seems insufficient [17]. There are two different inter-
pretations of student progress: one compares a student’s
performance in the course to the student’s performance at
the same point from previous editions of the course. The
other evaluates the students’ distances from achieving goals
expected to accomplish when finishing a course. Generally,
student progress is monitored by periodic quizzes and
tests (i.e., weekly, biweekly, or monthly). Ashenafi et al.
[37] proposed to use peer-assessment data to build linear
regression models for predicting students’ weekly progress.
In our paper, we combine the positive effect of learning
gain and the negative effect of forgetting in the learning
process together to measure student progress. In this way,
student progress monitoring can go together with their daily
learning, and no additional tests are required, avoiding
time-consuming and potential disgust of the students.

3 PRELIMINARY

In this section, we first formalize the learning process and
briefly introduce the definition of knowledge tracing. Sub-
sequently, we present some essential embeddings from four
categories in LPKT and LPKT-S. The mathematical notations
utilized in our paper are summarized in Table 1.

3.1 Problem Definition
In an intelligent tutoring system, supposing there are the
set of students S = {s1, s2, ..., si, ..., sI} with I different
students, the set of exercises E = {e1, e2, ..., ej , ..., eJ}
with J different exercises, and the set of knowledge con-
cepts K = {k1, k2, ..., km, ..., kM} with M different knowl-
edge concepts, where each exercise is related to specific
knowledge concepts. The Q-matrix Q ∈ RJ×M , which
is consisted of zeros and ones, indicates the relationship
between exercises and knowledge concepts. Here Qjm = 1
stands for that knowledge concept km is required for ex-
ercise ej and Qjm = 0 if not. Generally, when an exer-
cise is assigned to the student, he/she spends a certain
time answering it according to his/her learned knowl-
edge. The learning process keeps repeating the above an-
swering behavior on different exercises, where there is
an interval time between adjacent answering interactions.
Therefore, we denote the learning process of a student as
x = {(e1, at1, a1), it1, (e2, at2, a2), it2, ..., (et, att, at), itt},
where the tuple (et, att, at) represents a basic learning cell in
learning process, et is the exercise, att is the answer time the
student spent on answering et, and at represents the binary
correctness label (1 represents correct and 0 for wrong), itt
stands for the interval time between the learning cells.

Problem Definition. Given students’ learning sequence
X = {(e1, at1, a1), it1, (e2, at2, a2), it2, ..., (et, att, at), itt},
the KT task aims to monitor students’ changing knowledge state
during the learning process and predict their future performance
at the next learning interaction t+1, which can be further applied
to individualize students’ learning scheme and maximize their
learning efficiency.

TABLE 1
Mathematical notations and descriptions.

Notations Descriptions
S,E,KC The set of students, exercises, and knowledge concepts.
I, J,M The number of students, exercises, and knowledge concepts.
X Students’ learning sequence.
Q The Q-matrix.
Qe The defined enhance Q-matrix.
E The exercise embedding matrix.
l The learning embedding of the learning cell.
q The knowledge concept vector.
s The student embedding.
h, h̃ The knowledge state and related knowledge state.
x One step of students’ learning sequence.
k The knowledge concept.
e, e The exercise and its embedding.
at, at The answer time and its embedding.
it, it The interval time and its embedding.
a, a Students’ actual answer and its embedding.
lg The initial learning gain in LPKT and LPKT-S.
LG, L̃G The learning gain and related learning gain in LPKT.
Γ l, Γ f The learning gate and forgetting gate in LPKT.
p The student progress in LPKT.
LGs, L̃Gs The learning gain and related learning gain in LPKT-S.
Γ l
s , Γ f

s The learning gate and forgetting gate in LPKT-S.
ps The student progress in LPKT-S.
y The prediction of student future performance.

3.2 Embeddings

In LPKT, to realize our goal of modeling student progress
in the learning process, we define the basic cell of the
learning process as a tuple exercise—answer time—answer,
and each learning cell is separated by the interval time.
In addition, we also consider some other elements, such as
the knowledge concepts and students’ knowledge state. In
LPKT-S, we further introduce a student-specific element to
capture the differences in the progress rate of students. To
better understand the structure of LPKT and LPKT-S before
presenting their details, we briefly introduce the embed-
dings of those elements from the following four categories.

3.2.1 Time Embedding

Time embedding refers to the embedding of answer time
and interval time. Generally, the answer time and interval
time are both important elements in the learning process,
influencing students’ learning gains and the forgetting ef-
fect. For example, a longer answer time is more likely
to bring more learning gains, and a longer interval time
generally causes more forgetting. Huang et al. [32] and
Loftus [34] introduced the Forgetting curve theory to model
the decreasing knowledge state of students as time goes on.
Nagatani et al. [35] discretized all time features by minutes
at the log2 scale and represented them as one-hot vectors.
In LPKT and LPKT-S, because the interval time could be
much longer than the answer time, we discretize the former
by the minutes and the latter by the seconds [38]. Besides,
we set the maximum interval time as ten days. Then, we
represent the discretized answer time by an embedding ma-
trix at ∈ Rdat×dk , the discretized interval time is similarly
represented by an embedding matrix it ∈ Rdit×dk , where
dk is the dimension, dat and dit are the number of the
discretized answer time and interval time. Then, att and itt
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in learning interaction xt will be represented as the vector
att ∈ Rdk and itt ∈ Rdk .

3.2.2 Learning Embedding
Learning embedding is the embedding of the basic learning
cell, which is the main part of students’ learning process
and characterizes the knowledge they acquire by answering
exercises. We first represent the exercise set by an embed-
ding matrix E ∈ RJ×de , where de is the dimension. Then
each exercise et in learning cell xt will be represented as the
vector et ∈ Rde . For the answer at, i.e., 0 or 1, we expand it
to a all-zero or all-one vector at ∈ Rda , da is the dimension
as well. Finally, for getting the learning embedding lt ∈ Rdk

of the basic learning cell (et, att, at), we concatenate et,
att, and at together and apply a Multi-Layer Perceptron
(MLP) to deeply fuse the exercise embeddings, answer time
embeddings, and answer embeddings as follows:

lt = W T
1 [et ⊕ att ⊕ at] + b1, (2)

where ⊕ is the operation of concatenating, W1 ∈
R(de+dk+da)×dk is the weight matrix, b1 ∈ Rdk is the bias
term, dk is the dimension.

3.2.3 Knowledge Embedding
Knowledge embedding is served to store and update the
students’ knowledge state during their learning process. In
LPKT and LPKT-S, the knowledge embedding is initialized
as an embedding matrix h ∈ RM×dk , where M is the
number of knowledge concepts. Therefore, each row of the
matrix h represents the knowledge mastery of the corre-
sponding knowledge concept. At each learning interaction,
the positive effect of learning gain and the negative effect of
forgetting on each knowledge concept are both calculated
to get student progress, which then will be updated into the
knowledge embedding.

The Q-matrix indicates the relations between exercises
and knowledge concepts, determining the updated row in
the knowledge embedding after answering related exer-
cises. For instance, after answering the exercise ej with
knowledge concept km, the m-th row of the student’s
knowledge matrix will be updated. Traditionally, if the
knowledge concept km is not contained in the exercise ej ,
Qjm will be set as 0, which shows students’ performance
on exercise ej has no influence on their knowledge mastery
hm on km. However, manually-labeled Q-matrix may be
deficient because of inevitable errors and subjective bias
[39, 40]. In order to make up for possible omissions or
mistakes, we define an enhanced Q-matrix Qe ∈ RJ×M ,
where Qe

jm will be set as a small positive value γ rather than
0 even if km is not in ej . Then, for each knowledge concept
km, we can get the knowledge concept vector qkm

. Although
this unified setting is simple, we leave the exploration to
learn the specific weights in the Q-matrix as future works as
this paper focuses on the learning process modeling part.

3.2.4 Student Embedding
In our previous work [14], we assumed that all students
have the same progress rate. This assumption is unrea-
sonable to some extent, and the progress rate should be a
student-specific feature. For example, some students make
faster progress on geometry, and others are more good at

Algorithm 1 The LPKT Model.

Input: The embedding of the learning cell, lt ∈ Rdk ; The
embedding of the interval time, itt ∈ Rdk ; The student’s
previous knowledge state, ht−1 ∈ RM×dk ; The next
exercise to be answered, et+1 ∈ Rde .

Output: The student’s updated knowledge state, ht ∈
RM×dk ; The prediction of student’s answer on the next
exercise, yt+1.

1: compute the related knowledge state by Eq. (3);
2: obtain the student’s initial learning gain from Eq. (4);
3: compute the learning gate by Eq. (5);
4: obtain the related learning gain from Eq. (6);
5: define the forgetting gate by Eq. (7);
6: compute student progress and update the student’s

knowledge state by Eq. (8);
7: predict the student’s performance by Eq. (10);
8: return ht, yt+1;

learning algebra. Therefore, we extend LPKT to LPKT-S
and proposes the student embedding S ∈ RI×ds , which
assigns a specific vector si for student i. Here si is utilized
to distinguish the individual progress rate of the student.
LPKT-S can learn vectors containing different progress rate
information for different students in the training process,
which will be used to make more precise and personalized
predictions.

4 THE LPKT MODEL

In this section, we present the LPKT model in detail. The
main structure of LPKT is depicted in Figure 2 and Algo-
rithm 1. Precisely, LPKT consists of three modules at each
learning interaction: (1) the learning gain module, (2) the
forgetting module, and (3) the predicting module. After
a student has answered an exercise, the learning module
models his/her learning gains compared with the previous
learning interaction. The forgetting module measures how
much knowledge will be forgotten over time. Then, the
positive effect of learning gains and the negative effect of
forgotten knowledge will be utilized to output the student’s
learning progress and update his/her previous knowledge
state to obtain the latest knowledge state. Finally, the pre-
dicting module is proposed to predict the student’s per-
formance on the next exercise according to his/her latest
knowledge state.

4.1 Learning Gain Module

As our primary goal is to model the student progress for the
KT task, after formalizing the learning process as alternate
combinations of the basic learning cell and the interval time,
the next problem is to measure the implicit and dynamic
learning progress in the learning process. Traditionally, a
practice or a learning effect occurs when students answer
questions, i.e., the positive effect of the learning gain. Pre-
vious studies have defined the learning gain as ’distance
traveled’ [29], which stands for the difference in students’
performance at two points in time. Based on this definition,
we should consider the differences in students’ performance
during two continuous learning interactions to model the
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(tanh+1)/2
Multi-Layer Perception

Learning cell at time step t-1 Learning cell at time step t

Learning Gain Module Forgetting Module Predicting Module

Multi-Layer Perception

Fig. 2. The architecture of the LPKT model. For convenience, we only give the processing at timestamp t and conduct similar computations
recurrently on the student’s learning sequence. Specifically, the input is the current learning cell et,att,at, its previous neighbor et−1,att−1,at−1,
and their interval time itt. LPKT calculates the learning progress by quantifying the student’s learning gain and forgetting. Then, the learning
progress will be utilized to update the student’s knowledge state.

learning gain precisely. In LPKT, we realize the modeling
of learning gain through concatenating students’ previous
learning embedding lt−1 and present learning embedding lt
as the basic input element. However, although we can cap-
ture the differences in students’ performance with two con-
tinuous learning embeddings, it cannot capture the diversity
of learning gains in the learning process. For example, not
all students share the same learning gains even if they have
the same performance on the part of overlapped learning
sequences (i.e., the same continuous learning embeddings).
Therefore, we consider two influencing factors of the learn-
ing gains: the interval time and students’ previous knowl-
edge state. On the one hand, the interval time between two
learning cells is a critical element of the learning process,
reflecting the distinctions of learning gains. Generally, stu-
dents acquire more knowledge at shorter intervals, making
their learning process compact and continuous. On the other
hand, the previous knowledge state can also influence stu-
dents’ learning gains, such as students with worse mastery
have greater possibilities for improvement. Therefore, we
incorporate the above two factors into LPKT to model learn-
ing gains’ evolution. Specifically, for the interval time, we
concatenate itt into the basic input element in the timeline
between the two continuous learning embeddings. For the
previous knowledge state, to focus on the knowledge state
of the related knowledge concepts of the present exercise,
we first multiply ht−1 and the knowledge concept vector
qet of present exercise and get the related knowledge state
h̃t−1:

h̃t−1 = qet · ht−1, (3)

where · denotes the inner product between vectors. Then
the learning gains lgt will be modeled as follows:

lgt = tanh(W T
2 [lt−1 ⊕ itt ⊕ lt ⊕ h̃t−1] + b2), (4)

where W2 ∈ R(4dk)×dk is the weight matrix, b2 ∈ Rdk is the
bias term, tanh is the non-linear activation function.

Considering that not all learning gains can be trans-
formed into the growth of students’ knowledge completely,
we further design a learning gate Γ l

t to control the students’
absorptive capacity of knowledge:

Γ l
t = σ(W T

3 [lt−1 ⊕ itt ⊕ lt ⊕ h̃t−1] + b3), (5)

where W3 ∈ R(4dk)×dk is the weight matrix, b3 ∈ Rdk is the
bias term, σ is the non-linear sigmoid activation function.

Then Γ l
t will be multiplied to lgt to get the actual learn-

ing gain LGt in the t−th learning interaction. Similarly, to
expand the learning gain to other knowledge concepts, we
multiply LGt by qet to get the overall learning gains L̃Gt:

LGt = Γ l
t · ((lgt + 1)/2),

L̃Gt = qet ·LGt,
(6)

due to the output range of tanh function is (−1, 1), we
apply a linear transformation ((lgt + 1)/2 to project the
range of lgt from (−1, 1) to (0, 1). Therefore, the learning
gains LGt and L̃Gt will always be positive, which is in line
with our assumption that students can consistently acquire
knowledge at each learning interaction.

4.2 Forgetting Module

After computing L̃Gt, which plays an enhanced role in
students’ knowledge state, the opposite forgetting phe-
nomenon affects how much knowledge will be forgotten
as time goes on. According to the forgetting curve theory
[34], the amount of learned material that is remembered
decays exponentially over time. Nevertheless, a simple
manual-designed exponential decay function is insufficient
for capturing complex relations between knowledge state
and interval time. For modeling the complex forgetting
effects, we design a forgetting gate Γ f

t in LPKT, which
applies a MLP to learn the degree of loss information in
knowledge matrix based on three factors: (1) students’ pre-
vious knowledge state ht−1, (2) students’ present learning
gains LGt, and (3) interval time itt. The greater power
of non-linearity makes MLP more capable of capturing
the complex students’ forgetting behavior in learning. The
specific calculating formula is as follows:

Γ f
t = σ(W T

4 [ht−1 ⊕LGt ⊕ itt]) + b4), (7)

where W4 ∈ R(3dk)×dk is the weight matrix, b4 ∈ Rdk is the
bias term, σ is the non-linear sigmoid activation function.

Then, we can utilize both the positive effect of the learn-
ing gain and the negative effect of forgetting to assess the
student progress in learning, which is then used to update
the student’s knowledge state. Specifically, we first eliminate
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the influence of forgetting by multiplying Γ f
t to ht−1 and

the knowledge state ht after students have accomplished
the t−th learning interaction will be updated as follows 1:

pt = L̃Gt − Γ f
t ht−1,

ht = pt + ht−1.
(8)

As the neural network has shown great potential to
model the non-linearity relationship [41], we have also
attempted to update the knowledge state by the neural
network as follows:

ht = σ(W T
N [ht−1 ⊕ L̃Gt ⊕ Γ f

t ]) + bN ), (9)

where WN ∈ R(3dk)×dk is the weight matrix, bN ∈ Rdk

is the bias term. In this way, the neural network will
automatically combine the positive effect of the learning
gain, the negative effect of forgetting, and the student’s
previous knowledge state to output the latest knowledge
state. However, in the experiments, the results of the neural
combination are slightly worse than the means of addition
in Eq. 8, we will show it in section 6.7.

4.3 Predicting Module
Through modeling the student progress in the learning
process, we have got students’ latest knowledge state ht

after the t−th learning interaction. In this part, we will show
how to use ht to predict students’ performance on the next
exercise et+1.

In a real learning environment, after reading a new
exercise et+1, the student will try to solve it by applying
his/her knowledge to the corresponding knowledge con-
cepts. Therefore, we use the related knowledge state h̃t to
infer the student’s performance on et+1. We first concate-
nate h̃t and the exercise embedding et+1, then project them
to the output prediction by a fully connected network with
averaging operation and sigmoid activation:

yt+1 = σ(

∑
(W T

5 [et+1 ⊕ h̃t] + b5)

dk
), (10)

where W5 ∈ R(2dk)×dk is the weight matrix, b5 ∈ Rdk is
the bias term. The output yt+1, which is in the range of
(0, 1), represents the predicted performance of the student
on next exercise et+1. We can further set a threshold to
determine whether the student can answer et+1 correctly,
where he/she can get the right answer if yt+1 is greater
than the threshold. Otherwise, the answer is wrong.

4.4 Objective Function
To learn all parameters in LPKT, we also choose the cross-
entropy log loss between the prediction y and actual answer
a as the objective function:

L(θ) = −
T∑

t=1

(at log yt+(1−at) log(1−yt))+λθ||θ||2, (11)

where θ denotes all parameters of LPKT and λθ is the
regularization hyperparameter. The objective function was
minimized using Adam optimizer [42] on mini-batches.
More details of settings will be specified in the experiments.

1. In our previous version [14], we directly updated the knowledge
state ht without calculating the student progress pt.

Algorithm 2 The LPKT-S Model.

Input: The embedding of the learning cell, lt ∈ Rdk ; The
embedding of the interval time, itt ∈ Rdk ; The student’s
previous knowledge state, ht−1 ∈ RM×dk ; The student
embedding, si ∈ Rds ; The next exercise to be answered,
et+1 ∈ Rde .

Output: The student’s updated knowledge state, ht ∈
RM×dk ; The prediction of student’s answer on the next
exercise, yt+1.

1: compute the related knowledge state by Eq. (3);
2: obtain the student’s initial learning gain from Eq. (4);
3: compute the learning gate by Eq. (12);
4: obtain the related learning gain from Eq. (13);
5: define the forgetting gate by Eq. (14);
6: compute student progress and update the student’s

knowledge state by Eq. (15);
7: predict the student’s performance by Eq. (16);
8: return ht, yt+1;

5 THE LPKT-S MODEL

In this paper, we aim to assess students’ evolving knowl-
edge state by monitoring their learning progress, where
their different progress rates have significant impacts. In
LPKT, the differences between students’ progress rates are
implicitly captured by their knowledge state, the answer
time, and the interval time, which is insufficient to distin-
guish the student-specific progress rates. In other words,
students with similar knowledge states, answer time, and
interval time could significantly differ in progress rates.
Therefore, explicitly distinguishing students’ progress rates
in learning is necessary. In this section, we extend LPKT to
LPKT-S by introducing the student embedding to assign an
individual progress rate for each student.

Figure 3 depicts the main structure of LPKT-S, and Algo-
rithm 2 gives its processing flow. In contrast to LPKT, LPKT-
S makes changes in all three modules. Specifically, in the
learning gain module, the progress rate mainly influences
students’ knowledge absorptive capacity, i.e., students with
faster progress rates are better at transforming the initial
learning gain into their knowledge growth. Therefore, the
student’s initial learning gain in LPKT-S is also calculated
by Eq. (4), while the learning gate Γ l

s,t is determined by
the student embedding si, two continuous learning embed-
dings and their interval time as follows:

Γ l
s,t = σ(W T

6 [lt−1 ⊕ itt ⊕ lt ⊕ si] + b6), (12)

where W6 ∈ R(3dk+ds)×dk is the weight matrix, b6 ∈ Rdk is
the bias term. Similarly to LPKT, Γ l

s,t then will be multiplied
to lgt to get the actual learning gains LGs,t in the t−th
learning interaction. We also multiply LGs,t by qet to get
the overall learning gains L̃Gs,t:

LGs,t = Γ l
s,t · ((lgt + 1)/2),

L̃Gs,t = qet ·LGs,t.
(13)

Subsequently, in the forgetting module, since the for-
getting behaviors are also variations among students, we
further introduce the student embedding to monitor how
much knowledge will be forgotten by different students
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(tanh+1)/2
Multi-Layer Perception

Learning cell at time step t-1 Learning cell at time step t

Learning Gain Module Forgetting Module Predicting Module

Multi-Layer Perception

Fig. 3. The architecture of the LPKT-S model, which is similar to LPKT with three modules: learning gain module, forgetting module, and predicting
module. The difference is that LPKT-S considers the student-specific progress rate and explicitly measures its influence on the above three modules.

based on the original three elements in LPKT. As a result,
the forgetting gate Γ f

s,t in LPKT-S is computed as follows:

Γ f
s,t = σ(W T

7 [ht−1 ⊕LGs,t ⊕ itt ⊕ si]) + b7), (14)

where W7 ∈ R(3dk+ds)×dk is the weight matrix, b7 ∈ Rdk is
the bias term. Then, we can also utilize the student-specific
positive effect of the learning gain and the negative effect
of forgetting to assess the learning progress and update the
student’s knowledge state. The computing method is the
same as Eq. (8):

ps,t = L̃Gs,t − Γ f
s,tht−1,

ht = ps,t + ht−1.
(15)

Finally, in the predicting module, we also consider the
impacts of the student embedding on students’ styles of
answering exercises. In other words, students may have
different characteristics when applying their knowledge to
solve problems. Therefore, we add the student embedding
si to Eq. (10) in LPKT-S as follows:

yt+1 = σ(

∑
(W T

8 [et+1 ⊕ h̃t ⊕ si] + b8)

dk
), (16)

where W8 ∈ R(2dk+ds)×dk is the weight matrix, b8 ∈ Rdk is
the bias term. Then we can train LPKT-S by minimizing the
same objective function in Eq. (11).

By introducing the student embedding into the three
modules in LPKT, we realize the extended LPKT-S model
that explicitly distinguishes students’ different progress
rates. In the next section, we will show that LPKT-S can
perform better than LPKT.

6 EXPERIMENTS

In this section, we first describe the real-world datasets
used in the experiments. We then introduce the training
details of LPKT and LPKT-S and the baseline models. Sub-
sequently, we conduct several experiments to show their
interpretability from the following aspects: (1) Both LPKT
and LPKT-S can keep the consistency of students’ changing
knowledge state to their learning process by monitoring

student progress. (2) LPKT outperforms the state-of-the-
art knowledge model on student performance prediction.
LPKT-S can obtain better results than LPKT as it considers
students’ different progress rates. (3) The learning gain
module, the forgetting module, and the time information
utilized in LPKT and LPKT-S impact the knowledge tracing
results differently. (4) The student progress measured by
LPKT and LPKT-S has an excellent guiding significance for
making study schemes. (5) LPKT and LPKT-S can learn
meaningful exercise representations in the training process.

6.1 Datasets
To evaluate the effectiveness of LPKT and LPKT-S, we uti-
lize three real-world public datasets for experiments. Table
3 shows the statistics of all datasets. Figure 4 presents the
distribution of the interval time and the answer time in all
datasets, which approximates the logarithmic normal distri-
bution. It is worth noting that there are some small peaks
in the distribution of the interval time, which is related to
students’ practice patterns [45]. Besides, we have segmented
the learning sequences by interval time longer than ten days.
Therefore, the average length after segmentation is shorter
than the initial. A simple description of all datasets is listed
as follows:
• ASSISTments 20122 (ASSIST2012) is collected from the

ASSISTments [46], an online tutoring system created in
2004. The data is gathered from skill builder problem
sets where students need to work on similar exercises
to achieve mastery, which contains data for the school
year 2012-2013 with affect predictions. We have filtered
the records without knowledge concepts.

• ASSISTments Challenge3 (ASSISTChall) is utilized in
the 2017 ASSISTments data mining competition. Re-
searchers collected it from a longitudinal study, which
tracks students from their use of ASSISTments blended
learning platform in middle school from 2004 to 2007. In
this dataset, we also excluded the records without related
knowledge concepts.

2. https://sites.google.com/site/assistmentsdata/home/2012-13-
school-data-with-affect

3. https://sites.google.com/view/assistmentsdatamining/dataset
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TABLE 2
The introduction of all baselines, including their pros and cons.

Methods Introduction Pros Cons

DKT [12] using RNNs/LSTMs to model students’ learning sequence,
where the hidden state is seen as the knowledge state.

introducing deep learning to
KT for the first time.

directly applying RNNs/LSTMs in KT
without considering the learning property.

DKT+ [43] solving two problems in DKT: (1) failing to reconstruct the observed
input, (2) the predicted performance across time steps is inconsistent. enhancing the interpretability of DKT. the performance is limited.

DKVMN [22] utilizing the memory network to get interpretable knowledge states. storing and updating students’
knowledge state on specific KCs.

the defined read and write process to store
and update the knowledge state is complex.

SAKT [24] applying the self-attentive mechanism for KT. capturing the long-term dependencies
between different learning records. the utilization of self-attentive is insufficient.

CKT [23] introducing CNNs to solve the KT problem. implicitly modeling the student-specific
learning rate and prior knowledge. the interpretability is insufficient.

AKT [26]

using Rasch model-based embeddings to represent exercises and
designing the self-attentive encoder to learn context-aware

representations of exercises and answers. Based on the attention
mechanism, proposing the knowledge retriever to retrieve

knowledge acquired in the past relevant to the current exercise.

achieving quite good performance
based on effective utilization
of the attention mechanism.

the reason for performance promotion
is students’ repeated attempts [44] .

TABLE 3
Statistics of all datasets.

Statistics
Datasets

ASSIST2012 ASSISTchall EdNet-KT1
Students 29,018 1,709 78,431
Exercises 53,091 2,210 12,372
Concepts 265 102 141
Answer Time 26,715 1,265 4,030
Interval Time 13709 1,151 13,142
Initial Avg.length 93.45 505.98 125.45
Avg.length after segmentation 30.58 73.85 124.04

• EdNet-KT14 is the dataset of all student-system interac-
tions collected over two years by Santa, a multi-platform
AI tutoring service with more than 780K users in Korea
available through Android, iOS and web [47]. To provide
various actions in a consistent and organized manner,
EdNet offers the datasets in four different levels of ab-
straction. In this paper, we use its simplest form, i.e.,
EdNet-KT1, which consists of students’ exercise-solving
logs. Since the knowledge tags in this dataset are hier-
archical, we only use the most fine-grained tag as its
knowledge concept. Moreover, this dataset is rather big,
with more than 780,000 unique students. Nevertheless, so
many records are unnecessary for our experiments, which
brings a big computational burden. Therefore, we use only
10% of the whole data, as shown in Table 3.

6.2 Training Details
We first sorted all learning records of the student by the
answering timestamp. As mentioned above, we split the
learning sequence by interval times longer than ten days.
Then, we set all input sequences to a fixed length of 50. For
sequences longer than the fixed length, we cut them into
several unique sub-sequences according to the fixed length.
Zero vectors were used to pad the sequences up to the fixed
length for the sequences shorter than the fixed length.

For all datasets, we performed standard 5-fold cross-
validation for all models. Thus, for each fold, 80% of the stu-
dents were split as the training set (80%) and validation set
(20%), the rest 20% were used as the testing set. To set up the
training process, we randomly initialize all parameters in
the uniform distribution [48]. All the hyper-parameters are

4. http://ednet-leaderboard.s3-website-ap-northeast-
1.amazonaws.com/
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(f) The distribution of the interval
time on EdNet-KT1.

Fig. 4. Distributions of answer times and interval times in all datasets.

learned on the training set, and the model that performed
best on the validation set was used to evaluate the testing
set. In LPKT and LPKT-S, we added a dropout layer [49]
with a dropout rate of 0.2 to prevent overfitting. Parameter
dk, de, and ds are all set to be 128 and da is 50 in our
implementation. The small positive value γ in the enhanced
Q-matrix Qe is 0.03. The regularization hyperparameter λθ

in the objective function is 1e-6. Our code is available at
https://github.com/shshen-closer/LPKT-S.

6.3 Baselines

We compare LPKT with several previous methods. All these
methods are tuned to have the best performances for a fair
comparison. All models are trained on a cluster of Linux
servers with TITAN V100 GPUs. We have summarized the
characteristic of all baselines in Table 2.
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Exercises

Answers

Knowledge Concepts

70: Square Root

89: Ordering Fractions  

176: Equation Solving 
Two or Fewer Steps 
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(a) The evolution process of the same student’s knowledge state traced by LPKT-S in Figure 1.
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(b) The radar diagram.

Fig. 5. The evolution process of a student’s (the same student in Figure 1) knowledge state traced by LPKT-S. In sub-figure (a), we give more
information about the answer time and interval time. Sub-figure (b) is the radar diagram of the student’s knowledge state at the first interaction and
the last interaction. His/her maximum knowledge state in the whole learning process is also depicted.

TABLE 4
Results of comparison methods on student performance prediction. The best results are bold and the existing state-of-the-art are underlined.

Methods
ASSIST2012 ASSISTchall EdNet-KT1

RMSE AUC ACC r2 RMSE AUC ACC r2 RMSE AUC ACC r2

DKT 0.4253 0.7276 0.7335 0.1456 0.4486 0.7136 0.6895 0.1346 0.4555 0.6663 0.6812 0.0832
DKT+ 0.4265 0.7256 0.7321 0.1409 0.4505 0.7088 0.6873 0.1272 0.4602 0.6547 0.6719 0.0642
DKVMN 0.4287 0.7188 0.7285 0.1347 0.4530 0.6978 0.6826 0.1166 0.4563 0.6625 0.6798 0.0797
SAKT 0.4266 0.7238 0.7320 0.1405 0.4597 0.6733 0.6759 0.0909 0.4556 0.6658 0.6808 0.0828
CKT 0.4253 0.7279 0.7334 0.1458 0.4510 0.7063 0.6860 0.1253 0.4560 0.6642 0.6803 0.0809
AKT 0.4121 0.7706 0.7515 0.2004 0.4364 0.7501 0.7080 0.1801 0.4297 0.7557 0.7204 0.1842

LPKT 0.4089 0.7740 0.7551 0.2103 0.4179 0.7939 0.7385 0.2491 0. 4290 0. 7577 0.7218 0.1867
LPKT-S 0.4065 0.7803 0.7584 0.2195 0.4160 0.7979 0.7420 0.2558 0.4261 0.7662 0.7259 0.1976

TABLE 5
Results of ablation experiments on EdNet-KT1.

Methods learning forgetting time combination RMSE AUC ACC r2

LPKT L ! ! addition 0.4318 0.7503 0.7172 0.1760
LPKT F ! ! addition 0.4295 0.7561 0.7210 0.1846
LPKT (no time) ! ! addition 0.4298 0.7556 0.7203 0.1837
LPKT N ! ! ! neural network 0.4307 0.7536 0.7192 0.1804

LPKT ! ! ! addition 0.4290 0.7577 0.7218 0.1867

LPKT-S L ! ! addition 0.4283 0.7604 0.7223 0.1893
LPKT-S F ! ! addition 0.4267 0.7644 0.7249 0.1953
LPKT-S (no time) ! ! addition 0.4268 0.7644 0.7248 0.1950
LPKT-S N ! ! ! neural network 0.4281 0.7611 0.7228 0.1902

LPKT-S ! ! ! addition 0.4261 0.7662 0.7259 0.1976

6.4 Knowledge State Visualization

As our primary goal focuses on maintaining the consistency
between the traced knowledge state of students and their
learning process, we will first show that our proposed
method can capture reasonable knowledge state of students
that is consistent with their learning process as expected.
Specifically, Figure 5 shows the evolving knowledge state
traced by LPKT-S of the same student in Figure 1. There
are several important observations in the figure. First, our
proposed model can capture students’ learning progress
from both wrong and right learning interactions. For ex-

ample, even the student answered exercise e2, e3, e4, and e8
wrongly, LPKT thinks his/her knowledge state on related
knowledge concepts (i.e., 70: Square Root and 89: Ordering
Fractions) can also get promotion. After wrongly answer-
ing exercise e12, we note that LPKT-S thinks that his/her
knowledge state will decrease. The reason is that his/her
performance on 176: Equation Solving Two or Fewer Steps is
not stable in this stage, and LPKT-S needs more interac-
tions to modify the estimation of his/her knowledge state.
Second, if the student does not practice some knowledge
concepts, his/her knowledge state on these concepts will
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gradually reduce as time goes on. For instance, the stu-
dent’s knowledge state on 70: Square Root and 89: Ordering
Fractions is dropping by degrees after answering exercise
e7 and e10 respectively. Third, the general evolving process
of the student’s knowledge state is consistent with his/her
learning process. At the first learning interaction, his/her
knowledge state is almost the minimum. During the learn-
ing process, the student keeps absorbing new knowledge,
and his/her knowledge state achieves the maximum, which
can be reflected by the increased areas of the radar diagram
that indicates the student’s knowledge proficiency. At the
last learning interaction, because of forgetting, the student’s
knowledge state presents some reduction compared to the
maximum but is still better than the beginning.

6.5 Student Performance Prediction

Although our goal for proposing LPKT and LPKT-S is to get
more reasonable knowledge states of students, the experi-
mental results on student performance prediction are still
one of the most critical metrics for evaluating KT methods.
Therefore, we compare LPKT and LPKT-S with all baselines
on student performance prediction and report the average
results across five test folds in Table 4. To evaluate the
performance of all models comprehensively, we conduct ex-
tensive experiments on all datasets. To provide robust eval-
uation results, we utilize four evaluation metrics from both
regression and classification perspectives in all experiments.
Specifically, as a regression task, we quantify the distance
between the predicted and actual performance with (1) Root
Mean Square Error (RMSE) and (2) the square of Pearson
correlation (r2). Then, from the classification perspective, we
adopt (3) Area Under ROC Curve (AUC) and (4) Accuracy
(ACC) to measure the effectiveness. We set a threshold of
0.5 for the predictions when calculating the accuracy. From
Table 4, we can see that LPKT outperforms all other KT
methods on all datasets and metrics, which indicates that
better results in line with students’ learning process are pos-
itively related to predicting their future performance more
accurately. Moreover, LPKT-S achieves better results than
LPKT as it explicitly distinguishes students’ personalized
progress rates. It is worth mentioning that LPKT-S gets the
most boost on the dataset EdNet-KT1 and the least on the
dataset ASSISTchall compared to LPKT. This observation
indicates that the advantage of LPKT-S compared to LPKT
grows with the increase of students since it has student-
specific progress rates.

6.6 Visualization of the Student Progress and Knowl-
edge State

In LPKT and LPKT-S, we assess students’ knowledge state
through monitoring their learning progress, as the student
progress is more instructive for learning and teaching,
which tells not only the status quo of students’ knowledge
state but also if they are learning at a pace that will meet
the target goals. To indicate that LPKT and LPKT-S have
captured meaningful student progress, we give four cases of
student progress and knowledge state monitored by LPKT-S
and LPKT on the dataset ASSIST2012 in Figure 6. As shown
in the figure, we offer the learning progress and knowledge

state of four students who have practiced different knowl-
edge concepts to gain knowledge. LPKT and LPKT-S have
measured their different learning progress and knowledge
state at each learning step, where we can find some progress
patterns. First, as expected, LPKT and LPKT-S give positive
feedback to students’ knowledge states even if they got
wrong answers at the beginning. The knowledge state mea-
sured by LPKT and LPKT-S is in line with students’ learning
process as they generally get correct answers after several
failures, where the secret of success is that students can
learn from mistakes. Second, students tend to learn more
when they meet the knowledge concept for the first time.
The learning progress is also greater in this case. When the
practice times on the same knowledge concepts increase, the
learning progress decreases accordingly. This phenomenon
reflects a marginal utility, which can be utilized to program
a proper exercise sequence to maximize learning efficiency.
Third, some practices are redundant and unnecessary for
students. For example, student s1 has answered 8 times on
exercises related to the knowledge concept 44. However,
he/she has mastered this knowledge concept by the first
four practices and obtains almost no progress from the last
four practices. Therefore, we should leave he/she more time
to learn other knowledge concepts.

6.7 Ablation Experiments

In this section, we conduct ablation experiments to show
how each module in LPKT and LPKT-S affects the final
results. In Table 5, there are three variations of LPKT and
LPKT-S, each of which takes out one module from the full
model. The details are as follows:
• LPKT L / LPKT-S L refers to LPKT / LPKT-S without

considering forgetting, i.e., the forgetting gate is removed.
• LPKT F / LPKT-S F refers to LPKT / LPKT-S without

modeling learning gains, where the basic input element
in LPKT is replaced by a single learning embedding in-
stead of two continuous learning embeddings. Therefore,
LPKT F / LPKT-S F can only measure students’ learning
outcomes rather than learning gains.

• LPKT (no time) / LPKT-S (no time) refers to LPKT /
LPKT-S that does not utilize any time information, i.e.,
the answer time and interval time are dropped.

• LPKT N / LPKT-S N refers to LPKT / LPKT-S that
utilizes the neural network to combine the learning gain,
the forgetting effect, and students’ previous knowledge
states, as shown in Eq. 9.

The results in Table 5 show some interesting conclusions.
First, the common phenomenon of forgetting plays a critical
role in the learning process, negatively affecting student
progress. It can cause the most significant decline in the
performance of the predictive results if we do not consider
forgetting. Second, modeling the positive effect of learning
gains on student progress performs better than modeling
only learning outcomes. The learning gain can better reflect
the dynamic increment of students’ knowledge state. Third,
the answer time and interval time are essential information
in learning, which is harmful to accurately modeling the
learning process if omitted. Finally, when combining the
learning gain, the forgetting effect, and students’ previous
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Fig. 6. Visualizations of student progress and knowledge state monitored by LPKT-S and LPKT for two students on the dataset ASSIST2012. Here
the learning progress is for the corresponding knowledge at each learning step. We have normalized the learning progress to (-1,1), where the
larger value stands for faster progress and the negative number means a certain regress.
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Fig. 7. Comparison results of the influence of learning sequence length of LPKT-S, LPKT, and AKT on ASSIST2012

knowledge states, the simple way of addition is more natu-
ral and effective than the neural network.

In our previous work [14], we evaluated that LPKT can
better model students’ learning process than the state-of-
the-art KT method. In the following, we will show that
LPKT-S also has similar characteristics. Generally, a longer
learning sequence represents a complete learning process.
Therefore, we compare the LPKT-S, LPKT, and state-of-the-
art AKT on student performance prediction under different
learning sequence lengths in the dataset ASSIST2012. Figure
7 indicates the comparison results. Specifically, we respec-
tively set five lengths: 50, 40, 30, 20, and 10. Here, the shorter
the learning sequence, the more incomplete the learning
process. From Figure 7, we can see that the gap between
LPKT and AKT becomes wider (i.e., the reduction of exper-
imental results of LPKT is less than AKT) as the learning
sequence is going shorter. This observation demonstrates
that LPKT is less affected by incomplete learning sequences
and better models students’ learning processes. Moreover,
the performance of LPKT-S shows good stability, which is
almost unaffected by shorter learning sequences. The reason
is that the student embedding learned by LPKT-S contained
valuable student-specific information to compensate for the
loss of information caused by the shorter learning sequence.
In real learning environments, it is usually hard to access

students’ complete learning sequences. Therefore LPKT and
LPKT-S have more potential application values as they have
better robustness.

Besides, we have proposed the enhanced Q-matrix with
the parameter γ to make up for possible omissions or
mistakes in the original Q-matrix. To evaluate the impact
of γ on LPKT and LPKT-S, we conduct experiments with
five different values of γ: 0, 0.01, 0.03, 0.05 and 0.1. The
experimental results are shown in Figure 8. As we can see
from Figure 8, setting γ as a small positive value improves
the performance of LPKT and LPKT-S, where we can get the
maximum gain when γ is around 0.03. Specifically, when
closing to zero, it is hard for γ to play the role of bridging
the possible correlation between different knowledge con-
cepts. On the other hand, if γ grows larger, there will be
much more mistakes in the enhanced Q-matrix, which will
damage the performance of LPKT and LPKT-S.

6.8 Exercises Clustering

The embeddings of exercises are randomly initialized in
LPKT. As LPKT can get students’ knowledge state with high
interpretability and accuracy, the learned embeddings of
exercises should also show some meaning after training. In
Figure 9, we randomly choose 100 exercises from the dataset
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Fig. 8. The influence of the small positive value γ in the enhanced Q-matrix on the performance of LPKT and LPKT-S on ASSIST2012.
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Fig. 9. The exercises clustering results and the corresponding labels of KCs. We randomly selected 100 exercises from ASSISTchall and clustered
them into ten concepts by k-means. Exercises with the same KC are labeled in the same color and the number stands for the exercise index.

ASSISTchall and visualize the embeddings of these exercises
utilizing the T-SNE method [50]. As shown in Figure 9, we
can see that the learned embeddings of exercises in LPKT
can be split into ten concepts by the k-means algorithm [51]
and the clustering results show well meanings. For example,
the exercises 89, 95, 96, 98 with same concept subtraction are
split together, the exercises 53, 54, 55 with same concept
evaluating-functions are split together and the exercises 91,
92, 100 with same concept pattern-finding are also in the same
cluster. Although not all the clustering results are correct,
these automatically learned representations of exercises can
serve as meaningful supplements for educational experts.

7 CONCLUSIONS AND FUTURE WORKS

In this paper, we presented a novel model named Learn-
ing Process-consistent Knowledge Tracing (LPKT), which
explored a new paradigm for knowledge tracing through
monitoring student progress in learning. Specifically, we
first defined the basic learning cell as a tuple exercise—answer
time—answer. Then we formalized the learning process as
combinations of basic learning cells and interval times.
Subsequently, to monitor students’ learning progress and
update their knowledge state, we modeled the positive ef-
fect of the learning gain and the negative effect of forgetting
in the learning process. Moreover, considering that students
generally have different progress rates, we extended LPKT
to LPKT-S by introducing the student embedding, which
contained student-specific progress rates. Finally, we con-
ducted extensive experiments on three public datasets to

prove that LPKT and LPKT-S can get a more appropriate
knowledge state consistent with students’ learning process.
Besides, LPKT also outperformed the state-of-the-art KT
method on student performance prediction. LPKT-S was
better than LPKT as it explicitly distinguished students’
progress rates. Our work indicates a potential future re-
search direction for the KT task by monitoring students’
learning progress, which gives more instructive results for
enhancing learning and teaching.

In the future, we will continue to explore better ways to
measure students’ learning progress. For example, we may
use the feedback of both instructors and students about their
learning process. We can also explore potential constraints
in the objective function that help model learning progress.
Besides, to measure more fine-grained student progress
rates, we will consider assessing the progress rate on the
knowledge concept level. Finally, we will study how to
automatically learn the specific weights in the Q-matrix
to represent the relation between exercises and knowledge
concepts more precisely.
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