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ABSTRACT
Programming has become an important skill for individuals nowa-
days. For the demand to improve personal programming skill, track-
ing programming skill proficiency is getting more and more im-
portant. However, few researchers pay attention to measuring the
programming skill of learners. Most of existing studies on learner
capability portrait only made use of the exercise results, while the
rich behavioral information contained in programming exercise
process remain unused. Therefore, we propose a model that mea-
sures skill proficiency in programming exercise process named
Programming Skill Tracing (PST). We designed Code Information
Graph (CIG) to represent the feature of learners’ solution code, and
Code Tracing Graph (CTG) to measure the changes between the
adjacent submissions. Furthermore, we divided programming skill
into programming knowledge and coding ability to get more fine-
grained assessment. Finally, we conducted various experiments to
verify the effectiveness and interpretability of our PST model.

CCS CONCEPTS
• Information systems→ Data mining; • Computing method-
ologies → Artificial intelligence.
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1 INTRODUCTION
Nowadays programming has become an increasingly important
skill for individuals, encouraging more and more people to take pro-
gramming exercises and improve their programming skills. Along
the exercise process, it is indeed important for learners to track the
proficiency level of their programming skills.

Some related studies such as Cognitive Diagnosis [7, 10, 20, 26]
and Knowledge Tracing [1, 17, 23] have put much effort in learner
proficiency measurement during general exercise process. However,
we may notice that Programming Exercise Process (PEP) is quite
different from general exercise process. As demonstrated in Fig-
ure 1(a), in general exercise process previously studied, each learner
answers exercise questions sequentially, with only one chance to
answer every question. In contrast, PEP allows learners to solve the
problem with an iteration process. Within each exercise, learners
can submit their code, get feedbacks, and modify their solutions
iteratively, as shown in Figure 1(b). Unlike general exercise (e.g.
multiple choice exercises), learner’s proficiency is not only reflected
in whether they answer the exercise correctly, but also directly in
their submitted code (showing their programming knowledge), as
well as in the iteration process (showing their coding ability of
solving problems). In fact, the whole process produces much richer
behavioral data of each learner than general exercise process, which
needs more careful consideration when measuring programming
skill proficiency.

Considering the differences between Programming Exercise Pro-
cess and general exercise process, acquiring accurate proficiency
measurement in PEP are mainly faced with three challenges. First, a
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Figure 1: The difference between general exercise process
and programming exercise process.

better representation of learner’s submitted code is required to form
a strong basis of understanding learner’s behaviors. Existing code
representation methods [2, 4, 8, 11, 13, 28] focus more on industry
source code, and have limitations on representing learner’s code.
Second, learner’s solution iteration process needs to be carefully
studied and modeled, such as how solutions are initially built, how
learners decide where to modify in their code. Third, as mentioned
above, programming skill is not only related to learner’s knowledge
mastery, but also dependent on their ability of problems solving [3].
These two aspects should be more distinguished in programming
skill measuring.

To this end, we propose the Programming Skill Tracing (PST)
model for measuring programming skill proficiency in PEP. Con-
cretely, we first propose the Code Information Graph (CIG) to repre-
sent the feature of learner’s solutions of the programming exercise.
CIG can meet the requirements on mining code structure and natu-
ral semantics, which meanwhile highlights the special feature of
learner’s solutions by adding the data flow edge and the error infor-
mation edge. Then, we define the Code Tracing Graph (CTG) based
on CIG to measure the changes between the adjacent submissions
in a specific programming exercise process. Moreover, we divide
programming skill into programming knowledge and coding ability
to get more fine-grained assessment of programming skill in PST.
Finally, we conduct extensive experiments to evaluate the effective-
ness of PST, which indicate that PST has better performance than
existing methods. Besides, by modeling students’ programming
exercise process, PST can measure students’ programming skill
more explainably.

2 RELATEDWORK
Knowledge Tracing. The demand to dynamically trace knowl-
edge mastery drives the development of knowledge tracing. Early
probabilistic models[6, 14] like Bayesian Knowledge Tracing [6]
assumed the learning process follows the Markov process, where
the latent knowledge state of learners can be estimated by their ob-
served learning performance. In recent years, deep learning-based
model[17, 18, 22] like Deep Knowledge Tracing [18] achieved great
performance with the help of neural network. The latter EKT [17]
traces the relation among exercises and gets great performance.
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Figure 2: The overview of Programming Skill Tracing Model.

However, existing knowledge tracing models only consider the
knowledge mastery, which can not completely meet the require-
ment to measure programming skill as mentioned above.

Programming Ability Measurement. Some works also pay
attention to the programming learners. Early works on this field
used the exam scores of previous courses or the learner log data
to discover the potential struggled learners[5, 9, 21], but these
methods paid little attention to the source code itself. To better
model the ability of programming learners, Someworks[15, 27] used
knowledge tracing to measure the programming knowledge on the
one-exercise scene. The latter works on programming knowledge
tracing such as PDKT[29] began to consider the multi-exercise
scene, and implemented a double-sequence modeling process to
predict the next submission result. However, to the best of our
knowledge, there is no work in this field to measure programming
skill according to programming exercise process.

3 MODEL ARCHITECTURE
3.1 Problem Definition
In the online judge system, we record the learning sequence of a
learner as a 𝐿𝑆𝑛 = {𝑠1, 𝑠2, , 𝑠3, ..., 𝑠𝑛}, where 𝑠𝑖 = (𝑒𝑖 , 𝑐𝑖 , 𝑓𝑖 ) repre-
sents the solution submitted by the learner in the i step. Generally,
when the code 𝑐𝑖 meet the requirement of 𝑒𝑖 i.e. get the Accepted
(AC) result, 𝑓𝑖 equals to 1, otherwise 𝑓𝑖 equals to 0. To model the
programming exercise process, we defined the Problem Exercising
Process as the sequence of solutions submitted on the same exercise
over a period of time. Then we can define our Programming Skill
Proficiency Measurement problem as follows: given the histor-
ical programming exercise process log 𝐿𝑆𝑛 of each learner from
programming exercise process step 1 to N, our goal is to measure
the programming skill proficiency of learners.

3.2 Programming Skill Tracing
The overview of our designed PST model is shown in Figure 2.
Specifically, we first transform all solution components and solu-
tion modification into embeddings. Then, PST utilizes the solution
information to update the programming skill step by step. To fo-
cus on the key information of each solution, we utilize different



information in a programming exercise process to update the cod-
ing ability or programming knowledge. Then a specially designed
Prediction module can utilize the programming knowledge and
coding ability to make prediction. We will introduce the above two
sub-module in the following subsections.

3.2.1 Embedding. In PST, we represent the exercise set, feedback
set and position by three embedding matrices 𝐸 ∈ R𝐼×𝑑𝑒 , 𝐹 ∈
R𝐽 ×𝑑𝑒 and 𝑃 ∈ R𝐾×𝑑𝑒 . Then the exercise, the related feedback
and position in the solution 𝑠𝑖 will be represented as the vector
𝑒𝑖 ∈ 𝐸, 𝑓𝑖 ∈ 𝐹, 𝑝𝑖 ∈ 𝑃 . Moreover, we extract a graph named Code
Information Graph (CIG) to represent the code 𝑐𝑖 submitted by the
learner in the solution 𝑠𝑖 by highlighting the data flow relation and
error information. Based on the CIG representation, we propose
a Code Tracing Graph (CTG) to capture the changes in learners’
solution iterations. Subsequently, we can use GGNN[16] to learn
the solution embedding 𝑐𝑖𝑔𝑖 ∈ R𝑑𝑒 for CIG and the solution change
embedding 𝑐𝑡𝑔𝑖 for CTG in the solution 𝑠𝑖 ∈ R𝑑𝑒 by a pre-training
task to predict whether the source code can get Accepted result.
We utilized ℎ𝑖

𝑖
, ℎ
𝑓

𝑖
∈ R𝑑𝑒 to represent the position of a solution in

PST, where ℎ𝑖
𝑖
is set as the all-one vector if 𝑠𝑖 is the initial solution,

ℎ
𝑓

𝑖
is set as the all-one vector if 𝑠𝑖 is the final solution, otherwise

ℎ𝑖
𝑖
, ℎ
𝑓

𝑖
will be all-zero vector.

Besides, the learners’ modifications of their solutions in PEP
can directly reflect their knowledge and ability. Therefore, we first
utilized the triplet of the solution 𝑠𝑖 to represent the complete
solution information𝐶𝑖 , and utilized the previous solution 𝑠𝑖−1 and
the modification 𝑐𝑡𝑔𝑖 in this solution 𝑠𝑖 to represent the solution
modification information𝑀𝑖 .

3.2.2 Solution Building. When conducting programming, a pro-
gramming learner firstly build their solution to the exercise based
on their programming knowledge. To measure the programming
knowledge, we assume that the learner’s solution does not change
during a specific programming exercise process, and the submission
made by learners gets closer to the solution. Therefore, we utilize
the complete final solution information to update the programming
knowledge. Specifically, we first fusion the complete solution in-
formation 𝐶𝑖 to get the knowledge information 𝐾𝐼𝑖 . Considering
learners with different programming knowledge and different so-
lution iteration length may get different learning gain from same
exercise, we design a learning gate Γ𝑙𝑘 to track different learning
gain with different learners. Furthermore, we believe that learners
forget some programming knowledge over time, so we design a for-
get gate Γ𝑓 𝑘 to track the forget of programming knowledge. Then
we utilize the Γ𝑙𝑘 , Γ𝑓 𝑘 , 𝑃𝐾𝑖−1 and 𝐾𝐼𝑖 to update the programming
knowledge 𝑃𝐾𝑖−1 as follows:

𝐾𝐼𝑖 = 𝑡𝑎𝑛ℎ(𝑊1 · 𝑆𝑖 + 𝑏1)

Γ𝑙𝑘𝑖 = 𝜎 (𝑊2 · (𝐾𝐼𝑖 ⊕ 𝑃𝐾𝑖−1 ⊕ 𝑝𝑖 ) + 𝑏2)

Γ
𝑓 𝑘

𝑖
= 𝜎 (𝑊3 · (𝐾𝐼𝑖 ⊕ 𝑃𝐾𝑖−1) + 𝑏3)

𝐿𝐺 = 𝑡𝑎𝑛ℎ(𝑊4 · (𝐾𝐼𝑖 ⊕ 𝑃𝐾𝑖−1) + 𝑏4)

𝑃𝐾𝑖 = (1 − ℎ𝑙𝑖 ) · 𝑃𝐾𝑖−1 + ℎ
𝑙
𝑖 · (Γ

𝑓 𝑘

𝑖
· 𝑃𝐾𝑖−1 + Γ𝑙𝑘𝑖 · 𝐿𝐺),

(1)

where ℎ𝑓
𝑖
is utilized to identify whether the solution is the final

one of the exercise. After the learner build a solution to an exercise,

they utilize their coding ability to write source code to meet the
requirement of the exercise.

3.2.3 Solution Iteration. Usually the initial solution cannot meet
the requirement of the exercise well. Therefore, after a learner
submitted their source code, they receive feedback about this source
code and decide whether to update their solution. So we focused
on the modification of the source code made by the programming
learner, i.e., the solution iteration.

According to the above descriptions, we update the coding ability
by the two-fold information: initial solution and modification in
the solution iteration. Specifically, we first fuse the initial solution
information and modification in the solution iteration to get the
coding information 𝐶𝐼𝑖 . We also design a learning gate Γ𝑙𝑐 and a
forget gateΓ𝑓 𝑐 to track learning gain and forget of different learners,
we hope the coding ability can focus on the iteration process instead
of solution position, so we don’t utilize position information to
build learning gate for coding ability. Then we can utilize the 𝐶𝐼𝑖
to update coding ability 𝐶𝐴𝑖−1 as follows:

𝐶𝐼𝑖 = 𝑡𝑎𝑛ℎ(𝑊5 · (ℎ𝑖𝑖 · 𝑆𝑖 ⊕ (1 − ℎ𝑖𝑖 ) ·𝐶𝑖 ) + 𝑏5)

Γ𝑙𝑐𝑖 = 𝜎 (𝑊6 · (𝐶𝐼𝑖 ⊕ 𝐶𝐴𝑖−1) + 𝑏6)

Γ
𝑓 𝑐

𝑖
= 𝜎 (𝑊7 · (𝐶𝐼𝑖 ⊕ 𝐶𝐴𝑖−1) + 𝑏7)

𝐿𝐺 = 𝑡𝑎𝑛ℎ(𝑊8 · (𝐶𝐼𝑖 ⊕ 𝐶𝐴𝑖−1) + 𝑏8)

𝐶𝐴𝑖 = Γ
𝑓 𝑐

𝑖
·𝐶𝐴𝑖−1 + Γ𝑙𝑐𝑖 · 𝐿𝐺,

(2)

where ℎ𝑖
𝑖
is utilized to identify whether the solution is the initial

one of the exercise.

3.2.4 Performance Prediction. After the modeling process, we can
utilize the programming skill to predict the next programming
exercise process performance bymodeling a complete programming
exercise process. We first get the initial solution by the exercise
requirement and programming knowledge, then we model the code
writing to form the answer i.e. the source code by the solution and
coding ability, finally we make prediction of the next programming
exercise process performance and the score of next solution as
follows:

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖+1 = 𝑡𝑎𝑛ℎ(𝑊9 · (𝑃𝐾𝑖 ⊕ 𝑒𝑖+1) + 𝑏9)
𝑎𝑛𝑠𝑤𝑒𝑟𝑖+1 = 𝑡𝑎𝑛ℎ(𝑊10 · (𝐶𝐴𝑖 ⊕ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖+1) + 𝑏10)
𝑝𝑟𝑒𝑑𝑖+1 = 𝑡𝑎𝑛ℎ(𝑊11 · 𝑎𝑛𝑠𝑤𝑒𝑟𝑖+1 + 𝑏11)
𝑝𝑟𝑒𝑑𝑠𝑖+1 = 𝑡𝑎𝑛ℎ(𝑊12 · 𝑎𝑛𝑠𝑤𝑒𝑟𝑖+1 + 𝑏12),

(3)

3.3 Objective Function
To learn all parameters in PST, we choose the cross-entropy log
loss between the prediction 𝑝𝑟𝑒𝑑 and actual answer 𝑎 for the binary
criteria and the MSE loss between the prediction 𝑝𝑟𝑒𝑑𝑠 and actual
score 𝑠 for the continuous criteria as the objective function. Then
the loss of our model is defined as follows:

𝐿 = 𝛼 ·
𝑀∑︁
𝑖=1

(𝑎𝑖 log𝑝𝑟𝑒𝑑𝑖 + (1 − 𝑎𝑖 ) log (1 − 𝑝𝑟𝑒𝑑𝑖 )) + 𝛽 ·
𝑁∑︁
𝑗=1

|𝑝𝑟𝑒𝑑𝑠𝑗 − 𝑠 𝑗 |,

(4)
where 𝛼 , 𝛽 are the hyper-parameters, and𝑀 , 𝑁 are the number of
PEP and solutions respectively.



Table 1: Data statistics of datasets

Statistics AIZU_Cpp Atcoder_C

# of learners 5268 6282
# of exercises 2206 1670
# of solutions 271189 425238
Avg. solution of learner 51.48 67.69
Avg. PEP of learner 30.89 36.30
Avg. length of PSP 1.66 2.00
Avg. score of learner 0.77 0.62
AC rate of final solution 74.30% 97.17%

4 EXPERIMENT
In this section, we first introduce the datasets we use, and then
introduce the experimental setup and baseline models. Then we
show the experimental results of the programming skill proficiency
measurement. We provide four downstream tasks to evaluate the
models, which will be described in detail in 4.2.1. Subsequently,
we conduct visual experiment to verify the interpretability of PST.
We consider using programming knowledge, coding ability and
programming skill to represent learners in Atcoder_C respectively
and implement dimensional reduction.

4.1 Experimental Dataset and Setup
4.1.1 Datasets. We use two real-world datasets to evaluate the
effectiveness of our PST. The complete statisics of all the datasets is
shown in Table 1.AIZU_Cpp is collected from the Project_CodeNet
[19] dataset supplied by IBM. The benchmark is composed of learn-
ers who use CPP to practice exercises in AIZU.org, a popular online
programming learning website. Atcoder_C is collected from on-
line programming competition website Atcoder.org, composed of
exercise practice with C languege. For all datasets, we split all the
data to training set(60%), validation set(20%) and test set(20%).

4.1.2 Experimental Setup. In PST, we set the embedding dim 𝑑𝑒 as
128. To set up training process, we initialize all network parameters
with Xavier initialization, and set learning rate as 0.0001, mini
batches as 128 and dropout[24] with 0.2. Hyper-parameter 𝛼 and
𝛽 to train our PST are both set to 0.5. Our code is available at
https://github.com/rosen1998/PST.

4.1.3 Baseline Models. There are several methods to solve sim-
ilar problems, so we choose various models as baselines. Firstly,
to demonstrate the efficiency to extract the feature of learner’s
code, we compare our PST with the code representation model.
Then, we compare our PST with the most recent coding ability
measuring model to verify the effectiveness of utilizing the PEP.
We also compare our PST model with several existing Knowledge
Tracing (KT) models to prove the effectiveness of our efforts to split
programming skill into knowledge and ability. The details of the
above baselines are as follows:

• codeBERT[8] is a code representation learning module. To
meet the requirement of tracking the programming skill. we
utilize codeBERT to represent source code, and utilize the
code embedding, exercise embedding and feedback embed-
ding to model the full learning sequence of learners by the
structure of LSTM[12].

• PDKT[29] utilizes the exercise information and the source
code to implement double-sequence modeling process to
track programming knowledge. To satisfy the requirement
of our dataset, we replace the bipartite problem embedding
in PDKT with the exercise embedding in our PST. We don’t
find publicly available PLcodeBERT, so we utilize original
codeBERT instead of PLcodeBERT to get code embedding
and fine-tune the code embedding via the pre-training task
mentioned in 3.2.1.

• DKT[18] leverages RNN to assess knowledge mastery.
• EERNN[17] is one of most recent KT models which track
knowledge mastery well by capturing the relation among
exercises. We choose both EERNNM and EERNNA as base-
lines.

4.2 Experimental Results
4.2.1 Programming Skill Proficiency Measurement. We verify our
PST model with the Programming Skill Proficiency Measurement
task. We first train our PST via task 1 and fine-tune the model on
other tasks. We describe these tasks as follows:

• Task 1: Predict whether the next programming exercise
process will get a AC result.

• Task 2: Predict the average score of all solutions in next
programming exercise process.

• Task 3: Predict the score of initial solution in next program-
ming exercise process.

• Task 4: Predict the score of final solution in next program-
ming exercise process.

Task 1 is utilized to evaluate the efficiency to measure program-
ming skill of the models. Furthermore, in our hypothesis, the initial
solution and the submission times of the PEP can be used to eval-
uate how the model fit the coding ability, so we choose the task
2 and task 3 to evaluate how the model track the coding ability.
Furthermore, we believe that the final solution is consistent with
the actual solution of learners, so we propose task 4 to evaluate
how the model can fit the real solution of learners. For the first task,
we represent the learner has got at least one AC result in the PEP
as 1, otherwise as 0. Then the performance is evaluated in terms
of Accuracy (ACC) and Area Under Curve (AUC). For the last three
tasks, we select Root Mean Square Error (RMSE) to quantify the
distance between predicted score and the actual one.

The experiment results are depicted in Table 2. There are several
observations. First, compared to the codeBERT, our PST outper-
forms in Atcoder_C and the last three tasks in AIZU_Cpp, but the
advantages of PST over codeBERT in AIZU_Cpp is little. The effi-
ciency of CIG to represent learners’ source code has been proved,
but we guess the the pre-training process hinder CIG represent
learners’ source code well, so PST performs similarly in AIZU_Cpp
compared to codeBERT. Second, PST gets much better results on last
three tasks in AIZU_Cpp over both DKT and EERNN. Interestingly,
contrary to the previous observation, knowledge tracing models
can get closer results in Atcoder_C to PST. The fine-grained solution
information indeed can help models to better represent coding abil-
ity of the programming learners especially novice ones, so PST can
easily outperform over knowledge tracing models on AIZU_Cpp
with easier exercises (with higher AC rate and with higher average



Table 2: Results of comparison methods on Programming Skill Proficiency Measurement.
Dataset Atcoder_C AIZU_Cpp

Methods Task 1 Task 2 Task 3 Task 4 Task 1 Task 2 Task 3 Task 4
AUC ACC RMSE RMSE RMSE AUC ACC RMSE RMSE RMSE

codeBERT 0.6679 0.8001 0.3017 0.3592 0.3005 0.5054 0.9600 0.2309 0.3165 0.1765
PDKT 0.6066 0.7556 0.3494 0.3970 0.3569 0.5078 0.9184 0.3054 0.3773 0.2662
DKT 0.6955 0.8100 0.2962 0.3576 0.2904 0.5119 0.9588 0.2714 0.3689 0.1918

EERNNA 0.7106 0.8040 0.2998 0.3597 0.2954 0.5022 0.9598 0.2535 0.3519 0.1765
EERNNM 0.7138 0.8085 0.2952 0.3556 0.2908 0.5258 0.9592 0.2501 0.3475 0.1746

PST 0.7159 0.8107 0.2875 0.3453 0.2862 0.5281 0.9596 0.2239 0.3073 0.1731

score). The division of programming skill into coding ability and
programming knowledge is efficient. Third, compared to PDKT
without considering the PEP, our PST outperforms on all tasks
in all datasets, which uncover the efficiency of the PEP modeling
process. We also note that EERNNM outperforms than EERNNA on
both tasks, we guess the similar exercise text hinder the attention
mechanism of EERNNA from capturing the relation between two
exercises. Furthermore, most methods perform similarly on the task
1 in AIZU_Cpp, we guess the high AC rate as mentioned in Table 1
hinder all the models measure programming skill well.

4.2.2 The Effectiveness of Skill Division. We divide the program-
ming skill to coding ability and programming knowledge, the for-
mer one focuses on the initial solution building and the latter one
focuses on the solution iteration process. To demonstrate the ef-
ficiency of the division, we conduct a learner visualization via
t-SNE[25] dimensional reduction. We first divide the learners into
three groups with different average scores and with different aver-
age solution iteration lengths respectively. As shown in Figure 3, we
present the dimensional reduction results of 𝑃𝐾𝑓 embedding in the
first row, results of𝐶𝐴𝑓 embedding in the second row and results of
𝑃𝑆𝑓 (i.e. the concatenation of 𝑃𝐾𝑓 and𝐶𝐴𝑓 ) in the third row, where
𝑃𝐾𝑓 ,𝐶𝐴𝑓 is the programming knowledge and coding ability at final
time step generated from PST respectively. The figures in the first
column show the visualization results of the average score of learn-
ers, and the figures in the second column shows the visualization
results of the average solution iteration length of learners.

We note some observations in the experimental results. First,
programming knowledge embedding well distinguish learners with
different average scores, while it cannot distinguishes learners with
different solution iteration lengths. Second, coding ability embed-
ding provides clear distinction for learners with different average
iteration lengths, while the discrimination of coding ability to learn-
ers with different average scores is low. With advantages of both
programming knowledge and coding ability, programming skill
can distinguish both the two characteristic well. It can demonstrate
that the division of programming skill into coding ability and pro-
gramming knowledge is effective.

5 CONCLUSION AND FUTUREWORK
In this paper, we proposed a novel Programming Skill Tracing
(PST) model to measure the programming skill of learners in the
programming exercise process, taking consideration of rich be-
havioral information. Specific-designed Code Information Graph
(CIG) was utilized to represent the feature of learners’ solution code.

� Low average score � Middle average score � High average score

� Short iteration length � Median iteration length � Long iteration length

Programming
Knowledge

Coding
Ability

Programming
Skill

Average Score Average Iteration Length

Figure 3: Learner visualization in Atcoder_C.

Moreover, based on CIG, Code Tracing Graph (CTG) was utilized to
measure the changes between the adjacent submissions. With CIG
and CTG, we managed to measure programming skill by modeling
programming knowledge and coding ability respectively and get
more fine-grained assessment. Various experiments demonstrated
that our PST can measure programming skill proficiency with both
high accuracy and high interpretability.

To simplify the PEPmodeling process, we assume that the learner’s
solution does not change during a specific programming exercise
process. However, several programming learners will change their
solution to better satisfy the exercise requirement, so we will fo-
cus the solution changes via source code in the future. We will
also consider making tree pruning to better extract learner’s code
feature. Furthermore, due to dataset limitations, we only consider
programming knowledge as one-dimentional knowledge concept.
In the future, we will extend our PST to measure multi-dimentional
programming knowledge and related coding ability.
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