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ABSTRACT
Recommending suitable exercises to students in an online educa-
tion system is highly useful. Existing approaches usually rely on
machine learning techniques to mine large amounts of student
interaction log data accumulated in the systems to select the most
suitable exercises for each student. Generally, they mainly aim to
optimize a single objective, i.e., recommending non-mastered exer-
cises to address the immediate weakness of students. While this is a
reasonable objective, there exist more beneficial multiple objectives
in the long-term learning process that need to be addressed includ-
ing Review & Explore, Smoothness of difficulty level and Engagement.
In this paper, we propose a novel Deep Reinforcement learning
framework, namely DRE, for adaptively recommending Exercises
to students with optimization of above three objectives. In the
framework, we propose two different Exercise Q-Networks for the
agent, i.e., EQNM and EQNR, to generate recommendations follow-
ing Markov property and Recurrent manner, respectively. We also
propose novel reward functions to formally quantify those three ob-
jectives so that DRE could update and optimize its recommendation
strategy by interactively receiving students’ performance feedbacks
(e.g., score). We conduct extensive experiments on two real-world
datasets. Experimental results clearly show that the proposed DRE
can effectively learn from the student interaction data to optimize
multiple objectives in a single unified framework and adaptively
recommend suitable exercises to students.
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1 INTRODUCTION
Online intelligent education, as an extension of traditional class-
room setting, can leverage advanced technologies to provide per-
sonalized learning experiences to students [1]. Recent years have
witnessed the proliferation of online education platforms, such as
massive online open courses (MOOC), Khan Academy and online
judging (OJ) systems [1, 8, 39]. They assist students with abun-
dant learning materials (e.g., exercises), enabling them to learn and
practice on their own pace according to the individual needs.

To achieve this goal, recommender systems play a crucial role,
which helps students acquire knowledge by suggesting suitable
exercises instead of letting them self-seeking [25]. They establish
an open environment where students adaptively learn with the
system agent individually. As illustrated in Figure 1, this procedure
can be regarded as a set of interactions. At each time, the agent first
presents an exercise to the student who then learns and answers it.
Next, the agent receives performance feedback (e.g., right or wrong)
from her and recommends a new exercise to support her learning.
In practice, most systems rely on machine learning techniques to
analyze large amounts of student interaction data and recommend
suitable exercises. The main technical challenge is to design an
optimal recommendation strategy (algorithm) that can recommend
the best exercise for each student at the right time [4, 25].

Over the past years, many algorithms have been proposed for
exercise recommendation from both educational psychology and
data mining perspectives, such as collaborative filtering [32] and
cognitive diagnosis [7]. Generally, exiting studies try to discover the
weakness of students and then make decisions following a single
strategy of recommending their non-mastered exercises (i.e., to
address the weakness of students). Though it is reasonable, there
are serious limitations. For example, if a student is estimated to
be not good at the “Function” concept, the algorithm would tend
to keep pushing her to practice “Function” exercises, including
even the ones that she cannot deal with, which is non-optimal and
ignores the long-term learning needs of students in practice [4].

Therefore, an ideal recommender system should be able to sup-
port an adaptive strategy of considering the following three ad-
ditional objectives (instead of the above single one) for exercise
recommendation: 1) Review & Explore. The primary goal of exercise
recommendation is to help students acquire as much necessary
knowledge as possible. So it requires us to help fix students’ ex-
isting holes by making their non-mastered concepts more solid
with timely reviews, and simultaneously provide them a chance to
explore new knowledge even if their concept holes are not com-
pletely filled sometimes. For example, in Figure 1, it is desirable to
still recommend another exercise with “Function” concept to Bob
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Figure 1: Example: An exercise recommendation procedure
(left). Recommendation examples for three students (right).

at the second step since he answers a “Function” exercise wrong
before, but a new “Geometry” exercise could be recommended next
time. Hence we need to consider a trade-off between the review
and explore [4] factors. 2) Smoothness of difficulty level: As students
learn knowledge gradually, the difficulty levels of continuous rec-
ommendations should not vary dramatically [39]. For example, it
is inappropriate if we push a primary student who has just learned
“Addition and Subtraction” into a hard “Calculus” exercise. There-
fore, it is necessary to smooth the exercises’ difficulty levels for
recommendations (In the following, we use Smoothness for simplic-
ity). 3). Engagement. The engagement factor is of great importance
to maintain the enthusiasm of students when they are exercising.
As shown in Figure 1, neither John nor Eric is satisfied because they
always find the recommended exercises too hard or easy for them.
So it is desirable to adjust the recommendations so that some of
them are challenging for students but others more like "gifts" in
practice, which can help improve the engagement.

To the best of our knowledge, no previous work on exercise
recommendation has attempted to optimize the three objectives
discussed above simultaneously. In this paper, we address them in
a principled way by proposing a novel Deep Reinforcement learn-
ing framework for adaptively recommending Exercises to students,
namely DRE. In this framework, we formalize the recommenda-
tion procedure as a Markov decision process (MDP) with several
interactions between students and a recommender agent.

Due to the large number of exercises in our problem setting, it is
infeasible to estimate all exercise transitions at each step as some
Q-learning based approaches [4] do. We address this problem by
leveraging deep learning methods to model the action-value func-
tion. Meanwhile, to fully capture the exercising information from
students’ interaction records, we propose two different novel Exer-
cises Q-Networks (EQN), which generate recommendations based
on different amount of historical information from the exercises
done by a student. The first one is a straightforward yet effective
EQNM with Markov property, where the next recommendations to
students only depend on their current exercising performance. In
contrast, the second is a more sophisticated EQNR with Recurrent
manner, where we track all their exercising history to make deci-
sions. Both architectures are model-free, and thus we do not need
to calculate the state transitions in the whole exercise space.

In order to support adaptive recommendations with the above
three domain-specific objectives, we propose three novel reward
functions to capture and quantify the effects of them. As a result,
DRE could update and optimize its recommendation strategy by
interacting with students from the whole exercising trajectory.

We conduct extensive experiments to evaluate the proposed
framework on two real-world datasets. Our experimental results
show that the proposed DRE can effectively learn from the student
interaction data to optimize multiple objectives in a single unified
framework and adaptively recommend useful exercises to students.

Although our proposed framework was motivated by the recom-
mendation applications in the education domain, the main ideas in
our design of both the Exercise Q-Networks and the three reward
functions are much more general, and can be potentially applicable
to many other recommendation applications where some kind of
feedback information from the users is available (equivalent to the
performance of a student on an exercise). Indeed, the general goals
behind all those three objectives that we attempt to model seem to
be also desirable in many other recommendation applications.

2 RELATEDWORK
In this section, we briefly review the related works as follows.

Cognitive Diagnosis. The primary goal of online education
systems is to help students acquire necessary knowledge as much
as possible, which requires to suggest learning materials that cohere
with their knowledge states [4]. Therefore, one of the fundamental
studies refers to cognitive diagnosis, aiming at discovering student
mastery levels on knowledge concepts [5, 7, 16]. Existing cognitive
diagnostic models could be grouped into two categories: unidimen-
sional models and multidimensional models. Among them, Item
Response Theory (IRT), as a typical unidimensional model, con-
sidered each student as a latent trait variable [7, 36]. In contrast,
multidimensional models, such as Deterministic Inputs, Noisy-And
gate (DINA), characterized each student by a binary vector which
described whether or not she had mastered the knowledge con-
cepts [6]. In addition, to capture the dynamics of earning, a group
of Bayesian knowledge tracing [37] and deep learning tracing mod-
els [20, 21] try to update students’ knowledge states. With the
measured knowledge states of students, the recommender could
select exercises for each student following fine-grained rules [25].

Recommender System. In recent years, recommender systems
have achieved great success in a variety of domains, such as e-
commerce [40], POI services [10] and social networks [33–35], due
to their superiority of filtering confusing content. With massive
student exercising data accumulated in online learning systems,
several approaches leverage traditional algorithms for exercise rec-
ommendation including content-based filtering [25], collaborative
filtering [32] and hybrid ones [30]. Specifically, content-based meth-
ods provide students with exercises owning the similar proper-
ties that they perform not well in the past. Collaborative filtering
makes decisions for students driven by their neighbors with simi-
lar behaviors. One step further, hybrid methods take advantage of
both, considering other factors such as ontology [30] and seman-
tics [25]. Recently, deep learning techniques have advanced the
performance [20, 27, 28] with deep structures for capturing com-
plex student-exercise relationships. For example, Piech et al. [20]
utilized recurrent neural networks to track the exercising dynamics.
Su et al. [27] further considered the effects of text contents.

Reinforcement Learning in Education. Reinforcement learn-
ing is a kind of machine learning techniques, which has been exam-
ined in various fields, such as robotics [14], game [26] and recom-
mender systems [40]. Generally, it holds a good ability of letting
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Figure 2: The proposed DRE framework.

software agents learn to take actions in an unfamiliar environment
to maximize long-term reward. In educational psychology, state-of-
the-art studies combine both cognitive diagnosis and reinforcement
learning for exercise recommendation, such as multi-armed bandit
(MAB) method [31] and Q-learning algorithm [29]. However, such
approaches suffer from the problems as follows. First, they usually
have high computational and representational complexity, where
we have to estimate the transitions in all state-action spaces, and
maintain an entire Q table memory for storage [3, 29]. Obviously,
it is infeasible in real-world online education systems since they
usually contain large number of exercise candidates to be recom-
mended. Second, they only exploit students’ current grades for
estimating their states while ignoring the effects of more beneficial
information including exercise content and knowledge concept.

Our proposed DRE mainly has the following advantages com-
pared with the previous studies. First, DRE includes the flexible
Exercise Q-Network, a function approximator, to select exercises at
each step, alleviating the high complexity of computation and stor-
age. Second, DRE learns students’ states with the exercise contents,
knowledge concepts as well as performance scores and proposes dif-
ferent novel strategies for recommendations from their long-term
exercising. Third, DRE, to the best of our knowledge, is the first com-
prehensive attempt to simultaneously optimize three educational
domain-specific objectives including Review & Explore, Smoothness
and Engagement, supporting adaptive exercise recommendations.

3 PROBLEM AND FRAMEWORK OVERVIEW
In this section, we first formalize the exercise recommendation
problem and introduce the overview of DRE framework.

3.1 Problem Statement
In an online education system, suppose there are |U | students and
|E | exercises. We record the exercising process of a certain student
u = {(e1,p1), (e2,p2), · · · , (eT ,pT )},u ∈ U , where et ∈ E repre-
sents the exercise that student u practices at her time step t , and pt
denotes the corresponding performance. Generally, if she answers
exercise et right, pt equals to 1, otherwise pt equals to 0. For a
certain exercise e ∈ E, we describe it with a triplet as e = {c,k,d}.
Specifically, the element c represents its text content as a word
sequence e = {w1,w2, . . . ,wM }. k ∈ K describes its knowledge
concept (e.g., Function) coming from all K concepts. And d means
its difficulty factor. In this paper, we define the difficulty d as the ex-
ercise e’s error rate calculated from logged data, i.e., the percentage
of students who answer exercise e wrong [11, 12].

In this paper, we formalize the procedure of exercise recom-
mendation as a Markov Decision Process (MDP) in which the rec-
ommender agent interacts with students in a sequential decision

making procedure. Our formulation is similar to the most recent
one [29], however with two important differences: (1) we incorpo-
rate richer information about each exercise triple of e = {c,k,d}
into the state representation; (2) we design a flexible reward func-
tion reflecting multi-objective goals. More formally, we define our
MDP tuple of (S,A,R,T) as follows:
• States S: S is the state space which models students. At time
t , the state st ∈ S is defined as the preceding exercising
history of a student. The triple information of each exercise
e = {c,k,d} is also considered.
• Actions A: A is the action space, containing all exercises
in the system. Taking an action at ∈ A based on state st is
defined as recommending an exercise et+1 to the student.
• Reward R: R(S,A) is a reward function. After the agent
takes an action at at state st , the student learns and answers
it. Then the agent receives reward r (st ,at ) according to her
performance pt (feedback), where we design it with multiple
objectives. We will discuss it in detail in Section 4.3.
• TransitionsT : TransitionT(S,A) is a functionT : S×A →
S which maps a state st into a new state st+1 after the agent
takes action at .

With the above formulation, our goal is to find an optimal policy
π : S → A of recommending exercises to students, in the way that
maximizes the multi-objective rewards for recommendations.

3.2 Framework Overview
Figure 2 illustrates the overview of DRE framework with the MDP
formulation. Our environment is made up with student pool and
exercise pool. Our agent is designed with the flexible Exercise Q-
Networks (EQN). At time step t , the agent receives a student’s state
st with her exercising records, and then selects an action at , i.e.,
recommending an exercise from the exercise pool. Then the student
learns and answers it. One time step later, the agent receives reward
rt based on her performance pt . Specifically, the reward is designed
with a multi-objective one considering the effects of three domain-
unique characteristics including Review & Explore, Smoothness and
Engagement. After that, DRE moves to a new state st+1 = T(st ,at ).

Specifically, in DRE framework, we need to deal with three main
challenges: (1) how to effectively generate recommendations from
exercise pool (with EQN in Section 4.2); (2) how to quantify the
multiple domain-objective rewards for making adaptive recommen-
dations (Section 4.3); (3) how to train DRE to update the recommen-
dation policy π with offline logged exercising data (Section 4.4).

4 DRE FRAMEWORK
In this section, we introduce the details of DRE framework including
the optimization objective, Exercise Q-Network and multi-objective
reward design. After that, we present the training procedure.

4.1 Optimization Objective
To seek the optimal policy π , standard reinforcement learning [18]
finds the optimal action-value function Q∗(s,a) of taking action a
at state s to maximize the expected future rewards. Here, the future
rewards Rt of state-action pair (s,a) are discounted by a factor
γ ∈ (0, 1) per step, i.e., Rt =

∑T
t ′=t γ

t ′−t rt ′ , where rt ′ is the reward
at step t ′. Therefore, the optimal function Q∗(s,a) will satisfy the
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Figure 3: Two Exercise Q-Networks, where shaded and unshaded symbols denote observed and latent variables, respectively.
Bellman equation [2] as follows:

Q∗(s,a) = Es ′[r + γ max
a′

Q∗(s ′,a′)|s,a]. (1)

In Eq. (1), selecting the optimal action a′ requires to compute
the Q-values for all a′ ∈ A separately. However, it is infeasible in
online education systems due to the following two main reasons.
First, there are extremely large volume of exercises to be recom-
mended, which brings us a problem of estimating and storing all
state-action pairs. Second, since a student usually practices very
few exercises compared with all exercise space, this sparse obser-
vation causes a difficulty to update the Q-values of the state-action
pairs and calculate the state transitions if she does not practice the
corresponding exercises.

To alleviate these two problems, following [18], DRE framework
leverages the deep reinforcement learning solution, which utilizes
a non-linear function approximator θ to estimate the action-value
function, i.e., Q∗(s,a) ≈ Q(s,a;θ ) in Eq. (1), instead of maintaining
the entire Q table. In this paper, we design two novel Exercise
Q-Networks to implement the approximator θ following different
mechanisms (details will be discussed in Section 4.2). To estimate
this network approximator, we could minimize the following loss
function Lt (θt ) at step t as:

Lt (θt ) = Es,a,r,s ′[(y −Q(s,a;θt ))2], (2)

where y = Es ′[r + γ maxa′ Q(s ′,a′;θt ′)|s,a] is the target for cur-
rent iteration t . The parameters θt ′ represent the previous target
network, which are fixed when optimizing the Lt (θt ). As a result,
the derivatives of loss function Eq. (2) can be defined as:

∇θt Lt (θt ) =Es,a,r,s ′[(r + γ max
a′

Q(s ′,a′;θt ′)

−Q(s,a;θt ))∇θtQ(s,a;θt )]. (3)

As [18, 40] suggested, directly computing the full expectations of
the gradient in Eq. (3) can be of high computational complexity. In
this paper, we use Adam [13] method to optimize the loss function.

4.2 Exercise Q-Network
Now, we deal with the first challenge of implementing the function
approximator θ in Eq. (2). That is to design an appropriate network,

which we call Exercise Q-Network (EQN), with the goal to estimate
the action Q-value Q(s,a) of taking an action a at state s . Indeed,
a natural choice is the standard DQN [18], which utilizes several
fully connected layers for the estimation. However, such simple
structure cannot fully capture the information from students’ exer-
cising records to represent the state st , and usually fails to explore
the effects from their historical exercises including the contents,
concepts and performance scores. Therefore, as shown in Figure 3,
in this paper, we propose two implementations of EQN following
two mechanisms. The first one is EQNM with Markov property,
which just observes the latest one-time exercising record of the
student. The second one is EQNR with Recurrent manner, tracking
the long-term effects of her whole history. We will first introduce
the essential Exercise Module in both EQNs, followed by two EQNs.

4.2.1 Exercise Module. The goal of Exercise Module is to learn the
semantic encoding x of exercise e with its triplet input {c,k,d} at
each time. Naturally, as shown in Figure 3(c), we can first encode
its concept k (Knowledge Embedding) and content c (Content Em-
bedding) with separate components and then combine both as well
as its difficulty feature d into an overall vectorial representation.

For Knowledge Embedding, given the concept k , we first set it
to be a one-hot encoding k ∈ {0, 1}K . Since this intuitive one-hot
representation is too sparse for modeling [9], we introduce the
embedding matrix Wk to transfer it into a low-dimensional vector
vk ∈ R

dk with continuous values as: vk = Wk
Tk . Note that vk

reflects the semantics of exercise e in the knowledge space.
For Content Embedding, given the text content sequence with M

words c = {w1,w2, . . . ,wM }, we first preliminarily take Word2vec
to transform each wordwi into a d0-dimensional pre-trained word
embedding [17]. Then, we design a bidirectional LSTM, an improved
Long Short-Term Memory (LSTM), to learn contextual encoding vi
of each wordwi . Here, we adopt bidirectional LSTM because it can
make the most of contextual word information of exercise sentence
from both forward and backward directions [21]. Specifically, the
bidirectional LSTM could be formulated as:
−→v i = LSTM(wi ,

−→v i−1;θ−→v ),
←−v i = LSTM(wi ,

←−v i−1;θ←−v ),
vi =

−→v i ⊕
←−v i , (4)
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where vi ∈ Rdv is the context of wordwi , which concatenates (⊕)
both its forward context −→v i and backward context←−v i . After that,
to obtain the contextual representation of exercise e , we exploit the
element-wise max pooling operation to merge M word contexts
into a global embedding as vc = maxpool(v1,v2, . . . ,vM ). Hence,
vc reflects the semantics of exercise e in the context space.

One step further, the overall semantic encoding x of exercise e
could be concatenated with both its knowledge and context seman-
tics, i.e.,vk andvc , as well as its difficulty factord as: x = vk ⊕vc ⊕d .

4.2.2 EQNMwith Markov property. EQNM holds a straightforward
mechanism following the Markov property. It is a commonly made
assumption, defining that the next state depends only on the current
state and not on the sequences that precede it [22]. Given this theory,
EQNM just observes the student’s current exercising record to take
the action. Formally, we redefine the state in EQNM as:
• State s: The state st = (et ,pt ) is defined as a student’s exer-
cising record at time step t , consisting of the exercise et that
the student practices as well as her performance pt .

Figure 3(a) illustrates the network architecture of EQNM. Given
the state st = (et ,pt ), EQNM needs to learn the state embedding.
Since students getting right answer (i.e., score 1) or wrong answer
(i.e., score 0) to the same exercise actually reflect their different
states [21], it is necessary to distinguish these effects for state
embedding. Formally, EQNM first leverages Exercise Module to
extract the exercise encoding xt , and then concatenates it with the
performance pt to learn the combined exercising encoding pxt as:

pxt =

{
[xt ⊕ 0] if pt = 1,
[0 ⊕ xt ] if pt = 0,

(5)

where 0 = (0, 0, . . . , 0) is a performance feature vector with the
same dimensions of xt . As a result, in EQNM, we naturally consider
the exercising embedding pxt as the current state, i.e., st = pxt .

After that, based on state st , EQNM outputs the action Q-value
Q(st ,ai ) of each exercise candidate ai ∈ A in action space, with
several (n) fully-connected layers to learn the high-level state-action
features. On the top, we output the Q-value byQ(st ,ai ) = 1

exp(−hnt )
.

4.2.3 EQNR with Recurrent manner. Although EQNM provides a
straightforward yet effective way for estimating the action Q-value
Q(s,a), in real-world practice, the learning process of a student
is not static but evolves over time in which some more previous
exercising performance of her could also benefit recommendations.
Therefore, considering this long-term dynamic nature, we propose
a more sophisticated EQNR with Recurrent manner, which takes
the action based on the student’s whole exercising trajectories.
Formally, we redefine the state in EQNR as:
• State s : The state st = {(e1,p1), · · · , (et ,pt )} contains all the
student’s historical exercising records from time step 1 to t .

Figure 3(b) illustrates the architecture of EQNR. In comparison
with EQNM, EQNR introduces a GRU network, i.e., GRU (·;θд), to
track the student’s exercising history, where the long-term depen-
dency of the state st could be well captured. Here, we choose GRU
rather than LSTM in our implementation as it is computational effi-
cient and has comparable performance with LSTM [15]. Formally,

GRU updates the hidden exercising state lj as:
lj = GRU (px j , lj−1;θд). (6)

where px j at each time is calculated by Eq. (5). Then we consider
state st as the output of final hidden exercising state lt , i.e., st = lt .

After that, EQNR estimates the Q-valueQ(st ,ai ) of each exercise
candidate with the same operation in EQNM.

4.3 Multi-Objective Rewards
Now we discuss the second crucial issue of how to design our re-
ward r (st ,at ), which plays an important role to help DRE learn the
optimal recommendation policy π . As mentioned before, traditional
recommender systems (e.g., collaborative filtering [32]), usually fol-
low a fixed strategy of recommending non-mastered exercises to
the student. However, such single-objective recommendations can-
not satisfy the needs of students in practice [4]. In this paper, we
incorporate three major domain-specific factors into the reward
estimation including Review & Explore, Smoothness and Engagement,
supporting the adaptive exercise recommendations. Along this line,
we design our reward function R(S,A) in a multi-objective way.

Review & Explore. To help students acquire necessary knowl-
edge more effectively, a recommender agent should balance Review
and Explore factors [4]. The Review factor requires to help students
review what they learned not well to fix their concept holes. This
implies that a punishment (β1 < 0) should be given if the agent
recommends an exercise with different concept when she answers
one wrong just before. Comparatively, the Explore factor suggests
that we should seek diverse concepts to help them acquire more
knowledge even if their holes are not completely filled. Guiding
with this factor, we give a stimulation (β2 > 0) if the agent accesses
a new concept for recommendation. Formally, we design the first
reward trading-off both factors as:

r1 =


β1 if pt = 0 and kt+1 ∩ kt = ∅,

β2 if kt+1 \ {k1 ∪ k2 ∪ · · · ∪ kt } , ∅,

0 else.
(7)

Please note that r1 is a flexible reward where both β1 and β2
could be set in different scenarios. For example, we can set β2 with
lager values if we hope the agent focus more on exploring new
knowledge concepts in practice.

Smoothness. As discussed before, students usually learn knowl-
edge gradually, so the difficulty levels of continuous recommen-
dations should not vary dramatically [39]. This is an important
problem. However, to the best of our knowledge, none of existing
works consider it for exercise recommendation. Though there is no
standard solution to it, yet intuitively, we could make it negatively
correlated with the difference between the difficulty levels of the
two exercises. Along this line, there are many potential ways for
the Smoothness reward design. Here, for simplicity, we apply a com-
monly used squared loss function to smooth two recommendations
at continuous time steps from the difficulty view as:

r2 = L(dt+1,dt ) = −(dt+1 − dt )
2, (8)

whereL(·, ·) is the negative squared loss. LargerL(·, ·) indicates the
closer difficulties of two exercises, leading a stronger stimulation.

Engagement. It is of great importance to keep students always
engaged in the exercising, However, this is highly challenging to
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Algorithm 1: DRE Learning with Off-Policy Training
1 Initialize replay memory D with capacity Z ;
2 Initialize action-value function Q with random weights.;
3 for u = 1, 2, · · · , |U | do
4 Randomly initialize state s0;
5 for t = 1, 2, · · · , T do
6 Observe state st = (et , pt ) in EQNM or

st = {(e1, p1), · · · , (et , pt )} in EQNR;
7 Execute action at (et+1) from off-policy πo (st );
8 Compute reward rt according to pt+1 by Eq. (10);
9 Set state st+1 = (et+1, pt+1) in EQNM or

st+1 = {(e1, p1), · · · , (et , pt ), (et+1, pt+1)} in EQNR;
10 Store transition (st , at , rt , st+1) in D;
11 Sample minibatch of transition (s, a, r, s′) from D;

12 y =

{
r terminal s′

r + γ maxa′ (Q (s′, a′); θ ) non-terminal s′
;

13 Minimize (y −Q (s, a); θ )2 by Eq. (3);
14 end
15 end

model and none of prior studies has noticed that. To seek the solu-
tion, we find that in Figure 1, either John or Eric feels bored with
the recommendations because they always feel incapable or not
challenged about the exercises. Therefore, there is an appropriate
way that we could adjust the recommendations that makes some of
them are challenging but others seem more like “gifts” for students.
Intuitively, if a student always performs well recently, we need to
increase the difficulty levels of recommendations, and vice versa.
To achieve this goal, we design the Engagement reward as:

r3 = 1 − |д − φ(u,N )| , φ(u,N ) =
1
N

t∑
i=t−N

pi , (9)

where we call д ∈ [0, 1] the “learning goal” factor. We also set a
window with size N to let DRE recall the student most recent N
exercising records and calculate her average performance φ(u,N ).
The basic idea of Eq (9) is that we hope the recent average perfor-
mance of the student φ(u,N ) approaches the learning goal д. So
if the gap between д and φ(u,N ) is larger, our agent will receive
lower reward, then it can adaptively adjust recommendations.

It is worth mentioning that the learning goal д is flexible in prac-
tice, which can be set by the instructor or students themselves. For
example, if someone expects more challenging exercising experi-
ence, she can set д with a lower value.

As a result, we merge the above three reward with α1, α2, α3
balance coefficients as:

r = α1 × r1 + α2 × r2 + α3 × r3, {α1,α2,α3} ∈ [0, 1]. (10)

Eq. (10) also reflects a flexible way to merge multi-objective
rewards in DRE. That is, we can set them with different goals in
real world applications. For example, we can set α1 with a larger
value if we hope DRE focuses more on the first Review & Explore
objective. Specifically, if we respectively set α1,α2,α3 as 0, 0, 1 in
Eq. (10), and д as 0 in Eq (9), DRE will follow the common strategy
of recommending non-mastered exercises as many existing works
do. We will discuss more detailed settings in the experiments.

In summary, our proposedDRE frameworkmainly has the follow-
ing advantages. First, DRE holds a flexible Exercise Q-network to es-
timate the state-action Q-values, instead of directly calculating and
maintaining the entire Q table in the whole space, which is feasible
in education systems. Second, DRE deeply captures the effects from
students’ exercising historical trajectories for recommendations
following twomechanisms. Third, with the multi-objective rewards,
DRE takes various domain-specific characteristics for adaptively
recommending exercises to students during the learning process,
rather than just following the single “non-mastered” suggestion,
Last, our framework is model-free. It can solve the reinforcement
learning task directly using samples from the student records.

4.4 Framework Learning
In reinforcement learning, there is a problem of data inefficien-
cies by collecting large quantities of training data. To deal with
this problem, classical applications usually resort to the solution of
self-play or simulation [14, 26]. Nevertheless, for exercise recom-
mendations, it is hard to simulate real data with our policy due to
its complex dynamics coherent. Thus, we cannot receive rewards
in unexplored space, since observing rewards requires giving a real
exercise recommendation to a real student.

To solve this problem, we take an off-policy approach [40], mak-
ing full use of students’ offline logs from other agent policy (πo (st ))
to update our recommendation policy (π (st )). We present our off-
policy learning algorithm in Algorithm 1. Particularly, we introduce
the following widely used techniques in the training procedure.
First, we adopt experience reply [24] to store the agent’s latest Z ex-
periences (line 10). Then, we implement two separate networks [18],
i.e., evaluation network and target network, to avoid the divergence
of parameters when learning (line 13).

5 EXPERIMENT
In this section, we conduct extensive experiments to validate the
effectiveness of DRE framework.

5.1 Experimental Dataset
We used two real world datasets, namely MATH and PROGRAM.
The MATH dataset, supplied by iFLYTEK Co., Ltd, was collected
from their online education system called Zhixue (zhixue.com),
which helps high school students self-exercising on many subjects.
We collected the mathematical data records. In the system, when an
exercise was posted to a student, she answered it and got the score.
Then she could get the solution if she accessed the “hint” or stepped
into the next. In this scenario, we just recorded her first-attempt
responses and the timestamps for fairness. To make the reliability
of experimental results, we filtered the students that did less than 10
exercises and the exercises that no students had done. All exercises
belonged to 37 concepts, such as “Function” and “Geometry”.

The PROGRAM data were crawled from PKU JudgeOnline plat-
form (poj.org), enabling students self-training about programming
(we omit both system names for submission due to the anonymity
principle). In the OJ system, students were allowed to resubmit
their answers until they passed the assessment. Thus we could not
directly take the final “pass” or “failed” status as their performance
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Table 1: The statistics of the datasets.

Dataset Num.
Students

Num.
Exercises

Num.
Conceps

Num.
records

Avg. records
per student

MATH 52,010 2,464 37 1,272,264 24.5
PROGRAM 40,013 2,900 18 3,455,067 86.3

because students with different attempt times performed incon-
sistently. To deal with this phenomenon, we developed a function
P(y) = exp( 1−y4 ) to transfer their submission times y into the per-
formance score p, and however if the student failed at last, p=0.
Correspondingly, we left their latest submission timestamps for
the exercising time. Moreover, without loss of generality, we kept
the 18 main knowledge concepts, such as “Number Theory” and
“Data Structure”. We also filtered the students that did less than 20
exercises. More statistics of our datasets are presented in Table 11.

Dataset Analysis.We deeply analyzed both datasets in Figure 4.
Here, we first aggregated their exercising logs into different ses-
sions. For a certain student, if the interval timestamps of her two
continuous exercising records lasted more than 24 (10) hours in
MATH (PROGRAM), we split them into two sessions, and thus
her whole records could be aggregated into different sessions. Ob-
viously, more exercising submissions in the session (i.e., longer
sessions) reflect that she is willing to spend more time for learning.

Specifically, first, Figure 4(a) and Figure 4(b) show the average
concept coverage of all exercises in sessions with different lengths.
Obviously, longer sessions have larger concept coverage, which
means the student would learn more knowledge. This observation
guides us to explore new concepts for recommendations if we hope
students keep learning. Second, Figure 4(c) and Figure 4(d) calcu-
late the difficulty difference between two continuous exercises in
each session. Here, the box charts depict their distribution in each
group (we aggregated the groups with every 10 session lengths,
i.e., [0, 10), [10, 20), · · · ), and the line chart shows the proportion
of them greater than 0.4 in sessions with different length (if the
difficulty difference of two exercises is greater than 0.4, we define
that this change is dramatic). From the figure, sessions with shorter
length contain more samples with larger difficulty differences, and
simultaneously, longer exercising sessions have more smooth ex-
ercises that the student practices. Last, Figure 4(e) and Figure 4(f)
illustrate the scatter analysis of the average difficulty of all exer-
cises in each session. We find that longer sessions have exercises
with medium difficulty on average, which means students would be
engaged in the exercising by choosing both hard and easy exercises.
In summary, all the above analyses could support the rationality of
exploring our proposed three objectives including Review & Explore,
Smoothness and Engagement for exercise recommendations.

5.2 Experimental Setup
Exercise Q-Network. In EQNs, we initialized word embedding in
Exercise Module. We pretrained each word in exercises into a embed-
ding vector with the 50 dimensions (i.e., d0 = 50) by word2vec [17].
For the network initialization, we set the dimensiondk=10 in Knowl-
edge Embedding, dv=100 in Content Embedding, dl=100 in EQNR,
respectively. Moreover, in both EQNM and EQNR, we leveraged 2
(i.e., n=2) fully connected layers for Q-value estimation (Figure 3).
1The data is available at: https://base.ustc.edu.cn/data/DRE/
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Figure 4: Exercising record analysis in both datasets.

Training Setting. To set up training process, we initialized
all network parameters in DRE following [19]. Each parameter
was sampled fromU (−

√
6/(nin + nout ),

√
6/(nin + nout )) as their

initialized values, where nin and nout denoted the numbers of
neurons feeding in and fed out, respectively. Besides, we set the
discounted factor γ = 0.9 in Eq. (1). We set the capacity of replay
memory Z=500, and the minibatch as 32 in Algorithm 1.

Reward Setting. There are several reward hyperparameters
need to be set in the experiments, i.e., punishment β1 and stimula-
tion β2 in Eq. (7), window size N and learning goal д in Eq. (9), and
balance coefficients α1,α2,α3 in Eq. (10). As mentioned before, all
these hyperparameter settings are flexible for different scenarios.
Thus, we will discuss them later in the experiments.

For simplicity, we call our two DRE based models with two
Exercise Q-Netoworks (i.e., EQNM and EQNR), as DREM and DRER,
respectively. All experiments were conducted on a Linux server
with four 2.0GHz Intel Xeon E5-2620 CPUs and a Tesla K20m GPU.

5.3 Offline Evaluation
There are two typical scenarios of exercise recommendation in real
world applications, i.e., point-wise recommendation, and sequence-
wise recommendation, respectively. Specifically, in the point-wise
recommendation, we need to provide an exercise list for each stu-
dent at a particular time. All exercises in the list are ranked by
algorithms at the same time. In the sequence-wise scenario, we
have to recommend exercises to a specific student step by step,
where at each step, we suggest the best exercise, receive the feed-
back and then make the following decision in next round.

In the offline evaluation, we conducted experiments with the
logged exercising records. The logged data were static and only
contained certain pairs of student-exercise performance that had
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Table 2: The overall accuracy results of exercise recommendation in offline evaluation.
(a) MATH

Methods NDCG@10 NDCG@15 MAP@10 MAP@15 F1@10 F1@15

IRT 0.5065 0.6235 0.3373 0.4463 0.2100 0.3464
PMF 0.4900 0.5986 0.3155 0.4163 0.2016 0.3347
FM 0.5123 0.6279 0.3419 0.4507 0.2123 0.3489

DKT 0.5587 0.7033 0.3959 0.5486 0.2797 0.4634
DKVMN 0.5657 0.7112 0.4021 0.5581 0.2895 0.4747

DQN 0.5031 0.7001 0.3191 0.5296 0.2912 0.5178

DREM 0.6114 0.7773 0.4355 0.6353 0.3559 0.6033
DRER 0.6129 0.7813 0.4337 0.6435 0.3676 0.6099

(b) PROGRAM

Methods NDCG@10 NDCG@15 MAP@10 MAP@15 F1@10 F1@15

IRT 0.3369 0.4231 0.1852 0.2430 0.0879 0.1530
PMF 0.3330 0.4152 0.1810 0.2336 0.0842 0.1467
FM 0.3664 0.4456 0.2081 0.2617 0.0921 0.1567

DKT 0.3893 0.4924 0.2361 0.3197 0.1451 0.2445
DKVMN 0.3853 0.4889 0.2351 0.3226 0.1555 0.2620

DQN 0.3422 0.4901 0.1851 0.3095 0.1781 0.3266

DREM 0.4446 0.5638 0.2753 0.3834 0.1683 0.3325
DRER 0.4538 0.5907 0.2802 0.4059 0.2091 0.3655

been recorded. As a result, we cannot make sequential recommen-
dations since we lack the real-time feedback from students with the
offline data. Hence, it is hard to dynamically track the benefits of
domain-specific rewards. Therefore, in this scenario, we focus on
point-wise recommendation to demonstrate the accuracy of DRE.

To setup, we partitioned each student’s exercising sequence into
training/test sets. Specifically, for a certain student, we used her
beginning 70% records as training sets, and the remaining 30% for
testing. please note that in the test sets, we just observed students’
real performance on the exercises that they had practiced. Thus we
only used these exercises as ground truth for evaluation. For the
offline test, given a test student, DREM and DRER rank recommen-
dation list according to the estimated Q-values from high ones to
the low, based on her state at the last step in the training sets.

To evaluate the recommendation accuracy of DREM and DRER,
we targeted at a special case of recommending non-mastered exer-
cises to students, which is the most common scenario in practice.
Our goal was to rank the exercises that students answered wrong
at the top of recommendation list. Along this line, we adapted our
DREM and DRER, i.e., we set the reward settings as: r (α1=0, α2=0,
α3=1) (Eq. (10)); r3 (д=0, N=5) (Eq. (9)). The baselines as follows:

• IRT : Item Response Theory [7] is a popular cognitive diag-
nostic model to discover their knowledge levels for ranking.
• PMF : ProbabilisticMatrix Factorization [32] is a typicalmodel-
based collaborative filtering method, using a factorization
model that projects students and exercises into latent factors.
• FM: Factorization Machine [23] combines the advantage
of both support vector machines and matrix factorization,
where higher-order interactions of features are considered.
• DKT : Deep Knowledge Tracing [20] is a recent deep learning
method that leverages recurrent neural network to model
student exercising process to rank the exercises. We imple-
mented DKT with long short-term memory (LSTM).
• DKVMN : Dynamic Key-Value Memory Network [38] is a
state-of-the-art model to trace students’ states with a mem-
ory network. It contains a key matrix to store concept em-
bedding and a value matrix for state modeling. Then, it can
rank the results for students based on their states.
• DQN : We use the traditional Deep Q-network [18], replac-
ing our proposed Exercise Q-network, for recommendations.
We represent its states as the one-hot embedding with stu-
dent’s current exercising record (st = (et ,pt )). DQN also
incorporates the same reward settings with DRE.

Table 2 reports the recommendation accuracy result in terms of
the commonly used top@k ranking metrics [40] including NDCG,
MAP and F1. We set k={10, 15} for each metric (we repeated all
the experiments 5 times and averaged the results). There are some
observations. First, DRER and DREM perform the best on both
datasets, which indicates that DRE can optimize the recommen-
dation policy by interacting with students so that makes accurate
recommendations. Second, as our DRER and DREM incorporate the
sophisticated Exercise Q-Networks (EQNR and EQNM) for state
embedding, they perform better than simple DQN. This observation
shows that our proposed EQNs could well capture the state pre-
sentations of students’ exercising information including exercise
contents, knowledge concepts and performance scores for recom-
mendations. Third, DRER outperforms DREM, which demonstrates
that it is effective to incorporate GRU to track the long-term depen-
dency of exercising records for exercise recommendation. Moreover,
we notice that the improvement of DRER on MATH dataset is not
significant compared with it on PROGRAM. This proves that DREM,
although with simple structure, can also guarantee the comparable
recommendation performance when facing the sparse record data
(we can see from Table 1 that the average exercising lengths of stu-
dents in MATH (24.5) are much shorter compared with PROGRAM
(86.3)). Last, traditional methods (IRT, PMF, FM) do not perform
as well as all deep learning based models (DKT, DKVMN) and the
reinforcement learning based models (DQN, DREM, DRER). We
guess a possible reason is that they ignores the temporal nature of
the student’s exercising history. In summary, we can conclude that
DRE is effective in making accurate exercise recommendations by
taking full advantages of students’ exercising trajectories.

5.4 Online Evaluation
In the online evaluation, we focused on the sequence-wise recom-
mendation where we recommended exercises to students step by
step. Here, we tested DRE in a simulated environment where it in-
teracted with the student simulator and received real-time rewards
calculated by the predicted performance for recommendations. In
this scenario, we focused on evaluating the effectiveness of all
rewards, i.e., Review & Explore, Smoothness and Engagement.

To set up the online test, we should first prepare a simulator that
could accurately predict the performance given an exercise. Here,
we chose EERNN as our simulator due to its prediction superiority
in the literature [27] (Please note that comparing the performance
of simulators is not the major concern of this work). Then, we
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Figure 5: Overall performance in online evaluation.

divided the students with 50%/50% into two subsets on each dataset.
Specifically, we used one subset to train EERNN simulator and
the other for training DRE. Moreover, for training simulator, we
also leveraged the last 10% records for validating its predictive
performance. The results showed that EERNN simulator had over
80% prediction accuracy, which were consistent to results in [27].
Thus, EERNN simulator could support our online evaluation.

Recall that there are few existing approaches considering the
domain-specific objectives for exercise recommendations. We de-
signed a simple Random Greedy method and incorporate some
variants of DRER as baselines. (We just used DRER to better illus-
trate the reward effectiveness). The details of all methods are:
• RG: Random Greedy follows the simple strategy that ran-
domly recommends exercises at each step.
• DRER-r1: The variant only contains the Review & Explore re-
ward: r (α1=1, α2=0, α3=0) (Eq. (10)), r1 (β1=-1, β2=1) (Eq. (7)).
• DRER-r2: The variant only contains the Smoothness reward:
r (α1=0, α2=1, α3=0) (Eq. (10)).
• DRER-r3: The variant only contains the Engagement reward:
r (α1=0, α2=0, α3=1) (Eq. (10)), r3 (д=0.5, N=5) (Eq. (9)).
• DRER: DRER contains all three rewards: r (α1=1, α2=1, α3=1)
(Eq. (10)), r1 (β1=-1, β2=1) (Eq. (7)), r3 (д=0.5, N=5) (Eq. (9)).

5.4.1 Online performance. We set 20 sequential recommendations
for each method and calculated their cumulative rewards as the met-
ric for online evaluation. The overall results are shown in Figure 5.
We can conclude as follows. First, DRER performs the best, fol-
lowed by the variants. This evidence suggests that all three domain-
specific rewards can benefit exercise recommendation and DRE
framework can find optimal strategy by considering them simulta-
neously. Then, among three variants, DRER-r1 performs the best,
indicating that the Review & Explore reward plays more important
role than others for exercise recommendation.

5.4.2 Reward effectiveness. Now, we track the dynamics of three
domain-specific rewards, i.e., Review & Explore, Smoothness and
Engagement, to observe how they work in DRER.

Review & Explore. The Review & Explore reward helps DRE
framework make a trade-off between reviewing existing knowledge
and exploring new concepts. In Figure 6, we compare this perfor-
mance of DRER with different stimulation values β2 in Eq. (7) by
calculating the cumulative concept coverage at each step during
recommendation process. We can see: (1) As the recommendation
process progresses, the concept coverage value of all DRER models
increase; (2) DRER with larger β2 has faster coverage growth speed
than those with smaller ones. Therefore, we can conclude that with
the Review & Explore reward, DRE could well seek multiple concepts
for recommendations. Moreover, DRE would have more impacts
on exploration if we set the stimulation β2 with larger values.
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Figure 6: Results of Review & Explore reward.
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Figure 7: Results of Smoothness vs. Engagement rewards.

Smoothness vs. Engagement. DRE framework has two advan-
tages of incorporating both Smoothness and Engagement rewards.
Specifically, Smoothness factor controls the difficulty level of recom-
mendations, and Engagement lets students self-set different learning
goals, i.e.,д in Eq. (9). Figure 7 visualizes two recommendation exam-
ples with these two rewards based on the exercises in both datasets.
To set up, we first set different learning goals д={0.2, 0.5, 0.8} for
three simulated students using DRER model. Then we tracked the
difficulty levels of each exercise during 50 times in the recommen-
dation process. Moreover, we labeled the real-time performance
by simulators with different colors (“red” for wrong, “black” for
right). From the figure, we can see: (1) the difficulty levels of rec-
ommendations with DRER do not vary dramatically in most cases,
suggesting that the smoothness reward is effective. However, we
also notice that this performance in MATH dataset at step 10 is
not satisfied. We guess that DRER may not well track the student’s
state at the beginning so that its recommendations are not stable.
(2) If we set д with lower value (0.2), i.e., we hope the student gets
more challenging exercising experience, DRER would recommend
more difficult exercises so the simulated student would be expected
to frequently answer them wrong, showing that the engagement
reward works as we expected. With these observations, we can
conclude that DRE framework could well adjust recommendations
for adapting students with different learning needs in practice.

6 CONCLUSION AND FUTUREWORK
In this paper, we proposed a novel Deep Reinforcement learning
framework for Exercise recommendation, namelyDRE. In the frame-
work, we proposed two Exercise Q-Networks (EQN) to select ex-
ercise recommendations following different mechanisms, i.e., a
straightforward EQNM with Markov property and a sophisticated
EQNR with Recurrent manner. Comparatively, EQNR tracked the
dynamic nature of learning process for recommendation, which
was superior to EQNM. In addition, we leveraged three domain-
specific rewards to characterize the benefits of factors including
Review & Explore, Smoothness and Engagement, for letting DRE find
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the optimal recommendation strategy. Extensive experiments on
two real-world datasets demonstrated the effectiveness of DRE.

There are still some interesting directions for further studies.
First, We would like to seek more ways to learn the reward settings
automatically in practice. For example, we could dynamically adjust
the learning goal д in Eq. (9) by monitoring students’ behaviors.
If the student solves exercises very quickly, then the agent could
set д with a lower value to challenge her. Moreover, we are willing
to develop a system and apply DRE framework online. Moreover,
DRE is a general framework, which has potentials to be extended
to many other applications, such as e-commerce, where some kind
of users’ feedbacks can be equivalent to students’ performance. In
the future, we are willing to hold our Exercise Q-Networks as well
as the three reward objectives for more studies.
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